Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
Nat Commun. 2023 Feb 16;14(1):868. doi: 10.1038/s41467-023-36647-1.
The electrochemical instability of ether-based electrolyte solutions hinders their practical applications in high-voltage Li metal batteries. To circumvent this issue, here, we propose a dilution strategy to lose the Li/solvent interaction and use the dilute non-aqueous electrolyte solution in high-voltage lithium metal batteries. We demonstrate that in a non-polar dipropyl ether (DPE)-based electrolyte solution with lithium bis(fluorosulfonyl) imide salt, the decomposition order of solvated species can be adjusted to promote the Li/salt-derived anion clusters decomposition over free ether solvent molecules. This selective mechanism favors the formation of a robust cathode electrolyte interphase (CEI) and a solvent-deficient electric double-layer structure at the positive electrode interface. When the DPE-based electrolyte is tested in combination with a Li metal negative electrode (50 μm thick) and a LiNiCoMnO-based positive electrode (3.3 mAh/cm) in pouch cell configuration at 25 °C, a specific discharge capacity retention of about 74% after 150 cycles (0.33 and 1 mA/cm charge and discharge, respectively) is obtained.
基于醚的电解液的电化学不稳定性阻碍了其在高压锂金属电池中的实际应用。为了解决这个问题,我们提出了一种稀释策略,以失去锂/溶剂的相互作用,并在高压锂电池中使用稀非水电解液。我们证明,在一种基于二丙醚 (DPE) 的电解液中,使用双(氟磺酰基)亚胺锂盐,溶剂化物种的分解顺序可以被调整,以促进源自锂/盐的阴离子簇分解,而不是自由醚溶剂分子。这种选择性机制有利于在正极界面形成坚固的阴极电解质界面 (CEI) 和溶剂不足的双电层结构。当 DPE 基电解液与锂金属负极(50 μm 厚)和 LiNiCoMnO 基正极(3.3 mAh/cm)结合在 25°C 下的袋式电池结构中测试时,在 150 次循环后(分别为 0.33 和 1 mA/cm 的充电和放电),获得了约 74%的特定放电容量保持率。