Devina Winda, Subiyanto Iyan, Han Seong Ok, Yoon Hyung Chul, Kim Hyunuk
Hydrogen Convergence Materials Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea.
University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
ACS Appl Mater Interfaces. 2024 May 8;16(18):23087-23098. doi: 10.1021/acsami.3c19401. Epub 2024 Apr 16.
Cost-effective and environmentally friendly Fe-based active materials offer exceptionally high energy capacity in lithium-ion batteries (LIBs) due to their multiple electron redox reactions. However, challenges, such as morphology degradation during cycling, cell pulverization, and electrochemical stability, have hindered their widespread use. Herein, we demonstrated a simple salt-assisted freeze-drying method to design a double-shelled Fe/FeC core tightly anchored on a porous carbon framework (FEC). The shell consists of a thin FeO layer (≈2 nm) and a carbon layer (≈10 nm) on the outermost part. Benefiting from the complex nanostructuring (porous carbon support, core-shell nanoparticles, and FeC incorporation), the FEC anode delivered a high discharge capacity of 947 mAh g at 50 mA g and a fast-rate capability of 305 mAh g at 10 A g. Notably, the FEC cell still showed 86% reversible capacity retention (794 mAh g at 50 mA g) at a high cycling temperature of 80 °C, indicating superior structural integrity during cycling at extreme temperatures. Furthermore, we conducted a simple solid-state fluorination technique using the as-prepared FEC sample and excess NHF to prepare iron fluoride-carbon composites (FeF/C) as the positive electrode. The full cell configuration, consisting of the FEC anode and FeF/C cathode, reached a remarkable capacity of 200 mAh g at a 20 mA g rate or an energy density of approximately 530 Wh kg. Thus, the straightforward and simple experimental design holds great potential as a revolutionary Fe-based cathodic-anodic pair candidate for high-energy LIBs.
具有成本效益且环保的铁基活性材料,因其多电子氧化还原反应,在锂离子电池(LIBs)中具有极高的能量容量。然而,诸如循环过程中的形态退化、电池粉化以及电化学稳定性等挑战,阻碍了它们的广泛应用。在此,我们展示了一种简单的盐辅助冷冻干燥方法,用于设计一种紧密锚定在多孔碳框架(FEC)上的双壳Fe/FeC核。外壳由最外层约2 nm的薄FeO层和约10 nm的碳层组成。受益于复杂的纳米结构(多孔碳载体、核壳纳米颗粒和FeC掺入),FEC阳极在50 mA g下具有947 mAh g的高放电容量,在10 A g下具有305 mAh g的快速充放电能力。值得注意的是,FEC电池在80°C的高循环温度下仍显示出86%的可逆容量保持率(50 mA g下为794 mAh g),表明在极端温度下循环时具有优异的结构完整性。此外,我们使用制备好的FEC样品和过量的NHF进行了一种简单的固态氟化技术,以制备氟化铁-碳复合材料(FeF/C)作为正极。由FEC阳极和FeF/C阴极组成的全电池配置,在20 mA g的电流密度下达到了200 mAh g的显著容量,或约530 Wh kg的能量密度。因此,这种直接且简单的实验设计作为高能LIBs的一种革命性铁基阴阳极对候选材料具有巨大潜力。