Suppr超能文献

使用改进的SIS模型对累积感染病例进行跳跃下降调整预测。

Jump-Drop Adjusted Prediction of Cumulative Infected Cases Using the Modified SIS Model.

作者信息

Mohta Rashi, Prathapani Sravya, Ghosh Palash

机构信息

Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati, Assam India.

Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam India.

出版信息

Ann Data Sci. 2023 May 15:1-20. doi: 10.1007/s40745-023-00467-3.

Abstract

Accurate prediction of cumulative COVID-19 infected cases is essential for effectively managing the limited healthcare resources in India. Historically, epidemiological models have helped in controlling such epidemics. Models require accurate historical data to predict future outcomes. In our data, there were days exhibiting erratic, apparently anomalous jumps and drops in the number of daily reported COVID-19 infected cases that did not conform with the overall trend. Including those observations in the training data would most likely worsen model predictive accuracy. However, with existing epidemiological models it is not straightforward to determine, for a specific day, whether or not an outcome should be considered anomalous. In this work, we propose an algorithm to automatically identify anomalous 'jump' and 'drop' days, and then based upon the overall trend, the number of daily infected cases for those days is adjusted and the training data is amended using the adjusted observations. We applied the algorithm in conjunction with a recently proposed, modified Susceptible-Infected-Susceptible (SIS) model to demonstrate that prediction accuracy is improved after adjusting training data counts for apparent erratic anomalous jumps and drops.

摘要

准确预测新冠病毒累计感染病例对于有效管理印度有限的医疗资源至关重要。从历史上看,流行病学模型有助于控制此类疫情。模型需要准确的历史数据来预测未来结果。在我们的数据中,存在一些日子,每日报告的新冠病毒感染病例数出现不稳定、明显异常的波动,不符合总体趋势。将这些观测值纳入训练数据很可能会降低模型预测准确性。然而,使用现有的流行病学模型,对于特定的一天,要确定一个结果是否应被视为异常并非易事。在这项工作中,我们提出了一种算法来自动识别异常的“跃升”和“骤降”日,然后根据总体趋势,调整这些日子的每日感染病例数,并使用调整后的观测值修正训练数据。我们将该算法与最近提出的改进的易感-感染-易感(SIS)模型结合应用,以证明在针对明显不稳定的异常跃升和骤降调整训练数据计数后,预测准确性得到了提高。

相似文献

1
Jump-Drop Adjusted Prediction of Cumulative Infected Cases Using the Modified SIS Model.
Ann Data Sci. 2023 May 15:1-20. doi: 10.1007/s40745-023-00467-3.
3
Data-Driven Deep Learning Neural Networks for Predicting the Number of Individuals Infected by COVID-19 Omicron Variant.
Epidemiologia (Basel). 2023 Oct 20;4(4):420-453. doi: 10.3390/epidemiologia4040037.
5
Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis.
Lancet. 2022 Jun 25;399(10344):2351-2380. doi: 10.1016/S0140-6736(22)00484-6. Epub 2022 Apr 8.
6
Probabilistic predictions of SIS epidemics on networks based on population-level observations.
Math Biosci. 2022 Aug;350:108854. doi: 10.1016/j.mbs.2022.108854. Epub 2022 Jun 2.
9
Prediction of COVID-19 Trend in India and Its Four Worst-Affected States Using Modified SEIRD and LSTM Models.
SN Comput Sci. 2021;2(3):224. doi: 10.1007/s42979-021-00598-5. Epub 2021 Apr 20.
10
Predictive model with analysis of the initial spread of COVID-19 in India.
Int J Med Inform. 2020 Nov;143:104262. doi: 10.1016/j.ijmedinf.2020.104262. Epub 2020 Aug 25.

本文引用的文献

1
A novel compartmental model to capture the nonlinear trend of COVID-19.
Comput Biol Med. 2021 Jul;134:104421. doi: 10.1016/j.compbiomed.2021.104421. Epub 2021 Apr 30.
2
COVID-19 re-infection.
Eur J Clin Invest. 2021 May;51(5):e13537. doi: 10.1111/eci.13537. Epub 2021 Mar 17.
3
Genomic evidence for reinfection with SARS-CoV-2: a case study.
Lancet Infect Dis. 2021 Jan;21(1):52-58. doi: 10.1016/S1473-3099(20)30764-7. Epub 2020 Oct 12.
4
What reinfections mean for COVID-19.
Lancet Infect Dis. 2021 Jan;21(1):3-5. doi: 10.1016/S1473-3099(20)30783-0. Epub 2020 Oct 12.
5
COVID-19 in India: Statewise Analysis and Prediction.
JMIR Public Health Surveill. 2020 Aug 12;6(3):e20341. doi: 10.2196/20341.
7
9
The bioterrorism preparedness and response Early Aberration Reporting System (EARS).
J Urban Health. 2003 Jun;80(2 Suppl 1):i89-96. doi: 10.1007/pl00022319.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验