Suppr超能文献

基于深度位置软嵌入的区域评分网络用于乳腺 X 线照片分类。

Deep Location Soft-Embedding-Based Network With Regional Scoring for Mammogram Classification.

出版信息

IEEE Trans Med Imaging. 2024 Sep;43(9):3137-3148. doi: 10.1109/TMI.2024.3389661. Epub 2024 Sep 3.

Abstract

Early detection and treatment of breast cancer can significantly reduce patient mortality, and mammogram is an effective method for early screening. Computer-aided diagnosis (CAD) of mammography based on deep learning can assist radiologists in making more objective and accurate judgments. However, existing methods often depend on datasets with manual segmentation annotations. In addition, due to the large image sizes and small lesion proportions, many methods that do not use region of interest (ROI) mostly rely on multi-scale and multi-feature fusion models. These shortcomings increase the labor, money, and computational overhead of applying the model. Therefore, a deep location soft-embedding-based network with regional scoring (DLSEN-RS) is proposed. DLSEN-RS is an end-to-end mammography image classification method containing only one feature extractor and relies on positional embedding (PE) and aggregation pooling (AP) modules to locate lesion areas without bounding boxes, transfer learning, or multi-stage training. In particular, the introduced PE and AP modules exhibit versatility across various CNN models and improve the model's tumor localization and diagnostic accuracy for mammography images. Experiments are conducted on published INbreast and CBIS-DDSM datasets, and compared to previous state-of-the-art mammographic image classification methods, DLSEN-RS performed satisfactorily.

摘要

早期发现和治疗乳腺癌可以显著降低患者死亡率,而乳房 X 线照相术是早期筛查的有效方法。基于深度学习的乳房 X 线照相术计算机辅助诊断 (CAD) 可以帮助放射科医生做出更客观、更准确的判断。然而,现有的方法往往依赖于具有手动分割注释的数据集。此外,由于图像尺寸大且病变比例小,许多不使用感兴趣区域 (ROI) 的方法主要依赖于多尺度和多特征融合模型。这些缺点增加了应用模型的劳动力、资金和计算开销。因此,提出了一种基于深度位置软嵌入的具有区域评分的网络 (DLSEN-RS)。DLSEN-RS 是一种端到端的乳房 X 线照相术图像分类方法,仅包含一个特征提取器,并且依赖于位置嵌入 (PE) 和聚合池 (AP) 模块来定位无边界框、迁移学习或多阶段训练的病变区域。特别是,引入的 PE 和 AP 模块在各种 CNN 模型中具有通用性,并提高了模型对乳房 X 线照相术图像的肿瘤定位和诊断准确性。在已发布的 INbreast 和 CBIS-DDSM 数据集上进行了实验,与之前的最先进的乳房 X 线照相术图像分类方法相比,DLSEN-RS 表现出色。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验