Suppr超能文献

基于肌肉骨骼模型的最优控制估计惯性传感器数据中的步态运动学和动力学。

Estimation of gait kinematics and kinetics from inertial sensor data using optimal control of musculoskeletal models.

机构信息

Machine Learning and Data Analytics Lab, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Germany.

Machine Learning and Data Analytics Lab, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Germany.

出版信息

J Biomech. 2019 Oct 11;95:109278. doi: 10.1016/j.jbiomech.2019.07.022. Epub 2019 Aug 1.

Abstract

Inertial sensing enables field studies of human movement and ambulant assessment of patients. However, the challenge is to obtain a comprehensive analysis from low-quality data and sparse measurements. In this paper, we present a method to estimate gait kinematics and kinetics directly from raw inertial sensor data performing a single dynamic optimization. We formulated an optimal control problem to track accelerometer and gyroscope data with a planar musculoskeletal model. In addition, we minimized muscular effort to ensure a unique solution and to prevent the model from tracking noisy measurements too closely. For evaluation, we recorded data of ten subjects walking and running at six different speeds using seven inertial measurement units (IMUs). Results were compared to a conventional analysis using optical motion capture and a force plate. High correlations were achieved for gait kinematics (ρ⩾0.93) and kinetics (ρ⩾0.90). In contrast to existing IMU processing methods, a dynamically consistent simulation was obtained and we were able to estimate running kinetics. Besides kinematics and kinetics, further metrics such as muscle activations and metabolic cost can be directly obtained from simulated model movements. In summary, the method is insensitive to sensor noise and drift and provides a detailed analysis solely based on inertial sensor data.

摘要

惯性感测可用于人体运动的现场研究和患者的日常评估。然而,挑战在于如何从低质量的数据和稀疏的测量中获得全面的分析。在本文中,我们提出了一种从原始惯性传感器数据直接估计步态运动学和动力学的方法,只需进行单次动态优化。我们构建了一个最优控制问题,以跟踪加速度计和陀螺仪数据,并采用平面肌肉骨骼模型。此外,我们还最小化肌肉用力,以确保唯一解并防止模型过于紧密地跟踪噪声测量值。为了评估,我们使用七个惯性测量单元 (IMU) 记录了十个受试者以六种不同速度行走和跑步的数据。结果与使用光学运动捕捉和力板的传统分析进行了比较。步态运动学 (ρ ⩾ 0.93) 和动力学 (ρ ⩾ 0.90) 的相关性很高。与现有的 IMU 处理方法相比,我们获得了动态一致的模拟,并且能够估计跑步动力学。除了运动学和动力学,还可以直接从模拟模型运动中获得其他指标,如肌肉激活和代谢成本。总之,该方法对传感器噪声和漂移不敏感,并仅基于惯性传感器数据提供详细分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验