Mendoza Antonio, Razavi Mehdi, Cavallaro Joseph R
Rice University, Houston, TX, United States.
Texas Heart Institute, Houston, TX, United States.
Comput Cardiol (2010). 2023 Oct;50. doi: 10.22489/cinc.2023.180. Epub 2023 Dec 26.
Left Ventricular Assist Devices (LVADs) are increasingly used as long-term implantation therapy for advanced heart failure patients, where candidacy assessment is crucial for successful treatment and recovery. A Deep Learning system based on Electrocardiogram (ECG) diagnoses criteria to stratify candidacy is proposed, implementing multi-model processing, interpretability, and uncertainty estimation. The approach includes beat segmentation for single-lead classification, 12-lead analysis, and semantic segmentation, achieving state-of-the-art results on the classification evaluation of each model, with multilabel average AUC results of 0.9924, 0.9468, and 0.9956, respectively, presenting a novel approach for LVAD candidacy assessment, serving as an aid for decision-making.
左心室辅助装置(LVADs)越来越多地被用作晚期心力衰竭患者的长期植入治疗手段,在此过程中,候选资格评估对于成功治疗和康复至关重要。本文提出了一种基于心电图(ECG)诊断标准的深度学习系统,用于对候选资格进行分层,该系统实现了多模型处理、可解释性和不确定性估计。该方法包括用于单导联分类的心跳分割、12导联分析和语义分割,在每个模型的分类评估中均取得了领先成果,多标签平均AUC结果分别为0.9924、0.9468和0.9956,为LVAD候选资格评估提供了一种新方法,有助于决策制定。