Mendoza Antonio, Tume Sebastian, Puri Kriti, Acosta Sebastian, Cavallaro Joseph R
IEEE J Biomed Health Inform. 2025 Feb;29(2):783-791. doi: 10.1109/JBHI.2024.3510217. Epub 2025 Feb 10.
We link the hemodynamic response to inotropic agents with outcomes related to Mechanical Circulatory Support (MCS) by analyzing physiological time series and clinical features using a Machine Learning/Deep Learning ensemble approach for multi-modal waveforms in the pediatric cardiac intensive care setting of a quaternary-care hospital. Unlike existing studies that typically process a single feature type or focus on short-term diagnoses from physiological signals, our novel system processes minute-by-minute multi-sensor data to identify the need for MCS in patients admitted with acute decompensated heart failure. The data used includes tabular clinical features, time series from hemodynamic monitors, and raw waveforms from electrocardiogram and arterial blood pressure signals. Our predictions support an early identification of high-risk patients after just two days of Intensive Care Unit (ICU) admission, with classification and feature importance results confirming the predictive ability of the early hemodynamic response to inotropic agent administration, achieving an AUC of 0.88 in the prediction classification task. This is particularly significant in cases where clinical decisions are not straightforward, such as those in the cohort for this study.
在一家四级护理医院的儿科心脏重症监护环境中,我们通过使用机器学习/深度学习集成方法分析生理时间序列和临床特征,将对强心剂的血流动力学反应与机械循环支持(MCS)相关的结果联系起来。与现有研究通常处理单一特征类型或专注于从生理信号进行短期诊断不同,我们的新系统处理逐分钟的多传感器数据,以识别急性失代偿性心力衰竭患者对MCS的需求。所使用的数据包括表格临床特征、血流动力学监测仪的时间序列以及心电图和动脉血压信号的原始波形。我们的预测支持在重症监护病房(ICU)入院仅两天后就对高危患者进行早期识别,分类和特征重要性结果证实了早期血流动力学对强心剂给药反应的预测能力,在预测分类任务中实现了0.88的曲线下面积(AUC)。在临床决策不直接明了的情况下,例如本研究队列中的情况,这一点尤为重要。