文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

单细胞 RNA 测序揭示骨肉瘤中 T 细胞耗竭和免疫反应特征。

Single-cell RNA-seq reveals T cell exhaustion and immune response landscape in osteosarcoma.

机构信息

Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, China.

Department of Orthopedics, Third Hospital of Changsha, Changsha, China.

出版信息

Front Immunol. 2024 Apr 2;15:1362970. doi: 10.3389/fimmu.2024.1362970. eCollection 2024.


DOI:10.3389/fimmu.2024.1362970
PMID:38629071
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11018946/
Abstract

BACKGROUND: T cell exhaustion in the tumor microenvironment has been demonstrated as a substantial contributor to tumor immunosuppression and progression. However, the correlation between T cell exhaustion and osteosarcoma (OS) remains unclear. METHODS: In our present study, single-cell RNA-seq data for OS from the GEO database was analysed to identify CD8+ T cells and discern CD8+ T cell subsets objectively. Subgroup differentiation trajectory was then used to pinpoint genes altered in response to T cell exhaustion. Subsequently, six machine learning algorithms were applied to develop a prognostic model linked with T cell exhaustion. This model was subsequently validated in the TARGETs and Meta cohorts. Finally, we examined disparities in immune cell infiltration, immune checkpoints, immune-related pathways, and the efficacy of immunotherapy between high and low TEX score groups. RESULTS: The findings unveiled differential exhaustion in CD8+ T cells within the OS microenvironment. Three genes related to T cell exhaustion (RAD23A, SAC3D1, PSIP1) were identified and employed to formulate a T cell exhaustion model. This model exhibited robust predictive capabilities for OS prognosis, with patients in the low TEX score group demonstrating a more favorable prognosis, increased immune cell infiltration, and heightened responsiveness to treatment compared to those in the high TEX score group. CONCLUSION: In summary, our research elucidates the role of T cell exhaustion in the immunotherapy and progression of OS, the prognostic model constructed based on T cell exhaustion-related genes holds promise as a potential method for prognostication in the management and treatment of OS patients.

摘要

背景:在肿瘤微环境中,T 细胞耗竭已被证明是肿瘤免疫抑制和进展的一个重要因素。然而,T 细胞耗竭与骨肉瘤(OS)之间的相关性尚不清楚。

方法:在本研究中,我们分析了 GEO 数据库中 OS 的单细胞 RNA-seq 数据,以鉴定 CD8+T 细胞并客观地区分 CD8+T 细胞亚群。然后使用亚群分化轨迹来确定对 T 细胞耗竭有反应的基因。随后,应用六种机器学习算法来开发与 T 细胞耗竭相关的预后模型。该模型随后在 TARGETs 和 Meta 队列中进行了验证。最后,我们检查了高和低 TEX 评分组之间免疫细胞浸润、免疫检查点、免疫相关途径和免疫治疗效果的差异。

结果:研究结果揭示了 OS 微环境中 CD8+T 细胞的不同耗竭状态。确定了三个与 T 细胞耗竭相关的基因(RAD23A、SAC3D1、PSIP1),并用于构建 T 细胞耗竭模型。该模型对 OS 预后具有强大的预测能力,低 TEX 评分组的患者预后更好,免疫细胞浸润增加,对治疗的反应性更高,而高 TEX 评分组的患者则相反。

结论:总之,我们的研究阐明了 T 细胞耗竭在 OS 免疫治疗和进展中的作用,基于 T 细胞耗竭相关基因构建的预后模型有望成为 OS 患者管理和治疗中预测的一种潜在方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/ed678ea69c91/fimmu-15-1362970-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/a59babc4e0fc/fimmu-15-1362970-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/618b81f9a0d9/fimmu-15-1362970-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/1f755f8c8935/fimmu-15-1362970-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/79aa7ff9f3ef/fimmu-15-1362970-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/eb1c60507806/fimmu-15-1362970-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/654bab6a0ef3/fimmu-15-1362970-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/c2fd7e44497c/fimmu-15-1362970-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/f4d152d6406d/fimmu-15-1362970-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/9649d3b28e42/fimmu-15-1362970-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/ed678ea69c91/fimmu-15-1362970-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/a59babc4e0fc/fimmu-15-1362970-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/618b81f9a0d9/fimmu-15-1362970-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/1f755f8c8935/fimmu-15-1362970-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/79aa7ff9f3ef/fimmu-15-1362970-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/eb1c60507806/fimmu-15-1362970-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/654bab6a0ef3/fimmu-15-1362970-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/c2fd7e44497c/fimmu-15-1362970-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/f4d152d6406d/fimmu-15-1362970-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/9649d3b28e42/fimmu-15-1362970-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d5/11018946/ed678ea69c91/fimmu-15-1362970-g010.jpg

相似文献

[1]
Single-cell RNA-seq reveals T cell exhaustion and immune response landscape in osteosarcoma.

Front Immunol. 2024

[2]
Unraveling T cell exhaustion in the immune microenvironment of osteosarcoma via single-cell RNA transcriptome.

Cancer Immunol Immunother. 2024-1-27

[3]
Exploring the immune microenvironment of osteosarcoma through T cell exhaustion-associated gene expression: a study on prognosis prediction.

Front Immunol. 2023

[4]
Prediction of Prognosis and Immunotherapy Response with a Novel Natural Killer Cell Marker Genes Signature in Osteosarcoma.

Cancer Biother Radiopharm. 2024-9

[5]
T-cell exhaustion signatures characterize the immune landscape and predict HCC prognosis integrating single-cell RNA-seq and bulk RNA-sequencing.

Front Immunol. 2023

[6]
Importance of CD8 Tex cell-associated gene signatures in the prognosis and immunology of osteosarcoma.

Sci Rep. 2024-4-29

[7]
Characterization of the Tumor Microenvironment in Osteosarcoma Identifies Prognostic- and Immunotherapy-Relevant Gene Signatures.

J Immunol Res. 2022

[8]
Analysis of scRNA-seq and bulk RNA-seq demonstrates the effects of EVI2B or CD361 on CD8 T cells in osteosarcoma.

Exp Biol Med (Maywood). 2023-1

[9]
Comprehensive analysis of prognostic tumor microenvironment-related genes in osteosarcoma patients.

BMC Cancer. 2020-8-27

[10]
A CIC-related-epigenetic factors-based model associated with prediction, the tumor microenvironment and drug sensitivity in osteosarcoma.

Sci Rep. 2024-1-15

引用本文的文献

[1]
Mapping Current Research Status and Emerging Frontiers of T-Cell Exhaustion: A Comprehensive Data-Mining-Based Study.

Ann Surg Oncol. 2025-8-18

[2]
SAC3 domain containing 1 intervention in energy metabolism reprogramming assists in the progression of hepatocellular carcinoma.

World J Gastrointest Oncol. 2025-7-15

[3]
Bimodal onset and pan-cancer uniformity of immune-mediated liver injury: a retrospective cohort study.

Front Immunol. 2025-7-2

[4]
Activation of HTR2B Suppresses Osteosarcoma Progression through the STAT1-NLRP3 Inflammasome Pathway and Promotes OASL1+ Macrophage Production to Enhance Antitumor Immunity.

Adv Sci (Weinh). 2025-8

[5]
Identifying PSIP1 as a critical R-loop regulator in osteosarcoma via machine-learning and multi-omics analysis.

Cancer Cell Int. 2025-4-22

[6]
Emerging immunotherapies in osteosarcoma: from checkpoint blockade to cellular therapies.

Front Immunol. 2025-3-18

[7]
Identification of telomere-related gene subtypes and prognostic signatures in osteosarcoma.

Front Pharmacol. 2025-2-25

[8]
Identification and functional characterization of T-cell exhaustion-associated lncRNA AL031775.1 in osteosarcoma: a novel therapeutic target.

Front Immunol. 2025-2-24

[9]
Multi-omics and machine learning-driven CD8 T cell heterogeneity score for head and neck squamous cell carcinoma.

Mol Ther Nucleic Acids. 2024-12-5

[10]
Manipulating the cGAS-STING Axis: advancing innovative strategies for osteosarcoma therapeutics.

Front Immunol. 2025-2-7

本文引用的文献

[1]
Recent Advances in Molecular Mechanisms of Cancer Immunotherapy.

Cancers (Basel). 2023-5-11

[2]
T cells in health and disease.

Signal Transduct Target Ther. 2023-6-19

[3]
Targeting the tumor microenvironment: Potential strategy for cancer therapeutics.

Biochim Biophys Acta Mol Basis Dis. 2023-8

[4]
Centrosome amplification-related signature correlated with immune microenvironment and treatment response predicts prognosis and improves diagnosis of hepatocellular carcinoma by integrating machine learning and single-cell analyses.

Hepatol Int. 2024-2

[5]
Checkpoint TIPE2 Limits the Helper Functions of NK Cells in Supporting Antitumor CD8 T Cells.

Adv Sci (Weinh). 2023-4

[6]
Identification of diagnostic biomarkers for idiopathic pulmonary hypertension with metabolic syndrome by bioinformatics and machine learning.

Sci Rep. 2023-1-12

[7]
Current State of Immunotherapy and Mechanisms of Immune Evasion in Ewing Sarcoma and Osteosarcoma.

Cancers (Basel). 2022-12-30

[8]
Advancing beyond the twists and turns of T cell exhaustion in cancer.

Sci Transl Med. 2022-11-9

[9]
Methylation of DNA Repair Genes as a Prognostic Biomarker in AML of a TCGA-LAML Cohort.

Clin Lab. 2022-7-1

[10]
CD8+ T cell trajectory subtypes decode tumor heterogeneity and provide treatment recommendations for hepatocellular carcinoma.

Front Immunol. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索