结合LIANA和Tensor-cell2cell来解读多个样本间的细胞-细胞通讯。

Combining LIANA and Tensor-cell2cell to decipher cell-cell communication across multiple samples.

作者信息

Baghdassarian Hratch M, Dimitrov Daniel, Armingol Erick, Saez-Rodriguez Julio, Lewis Nathan E

机构信息

Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.

Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, 69120 Heidelberg, Germany.

出版信息

Cell Rep Methods. 2024 Apr 22;4(4):100758. doi: 10.1016/j.crmeth.2024.100758. Epub 2024 Apr 16.

Abstract

In recent years, data-driven inference of cell-cell communication has helped reveal coordinated biological processes across cell types. Here, we integrate two tools, LIANA and Tensor-cell2cell, which, when combined, can deploy multiple existing methods and resources to enable the robust and flexible identification of cell-cell communication programs across multiple samples. In this work, we show how the integration of our tools facilitates the choice of method to infer cell-cell communication and subsequently perform an unsupervised deconvolution to obtain and summarize biological insights. We explain how to perform the analysis step by step in both Python and R and provide online tutorials with detailed instructions available at https://ccc-protocols.readthedocs.io/. This workflow typically takes ∼1.5 h to complete from installation to downstream visualizations on a graphics processing unit-enabled computer for a dataset of ∼63,000 cells, 10 cell types, and 12 samples.

摘要

近年来,基于数据驱动的细胞间通讯推断有助于揭示跨细胞类型的协同生物过程。在此,我们整合了两种工具LIANA和Tensor-cell2cell,二者结合时,可以部署多种现有方法和资源,从而在多个样本中稳健且灵活地识别细胞间通讯程序。在这项工作中,我们展示了工具整合如何促进细胞间通讯推断方法的选择,并随后进行无监督反卷积以获取和总结生物学见解。我们解释了如何在Python和R中逐步进行分析,并在https://ccc-protocols.readthedocs.io/上提供了带有详细说明的在线教程。对于一个包含约63,000个细胞、10种细胞类型和12个样本的数据集,在启用图形处理单元的计算机上,此工作流程从安装到下游可视化通常需要约1.5小时才能完成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95f6/11046036/0484284e54da/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索