Mitchel Jonathan, Gordon M Grace, Perez Richard K, Biederstedt Evan, Bueno Raymund, Ye Chun Jimmie, Kharchenko Peter V
Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA, USA.
Nat Biotechnol. 2024 Sep 23. doi: 10.1038/s41587-024-02411-z.
Tissue-level and organism-level biological processes often involve the coordinated action of multiple distinct cell types. The recent application of single-cell assays to many individuals should enable the study of how donor-level variation in one cell type is linked to that in other cell types. Here we introduce a computational approach called single-cell interpretable tensor decomposition (scITD) to identify common axes of interindividual variation by considering joint expression variation across multiple cell types. scITD combines expression matrices from each cell type into a higher-order matrix and factorizes the result using the Tucker tensor decomposition. Applying scITD to single-cell RNA-sequencing data on 115 persons with lupus and 83 persons with coronavirus disease 2019, we identify patterns of coordinated cellular activity linked to disease severity and specific phenotypes, such as lupus nephritis. scITD results also implicate specific signaling pathways likely mediating coordination between cell types. Overall, scITD offers a tool for understanding the covariation of cell states across individuals, which can yield insights into the complex processes that define and stratify disease.
组织水平和机体水平的生物过程通常涉及多种不同细胞类型的协同作用。近期将单细胞分析应用于众多个体,应该能够研究一种细胞类型中供体水平的变异如何与其他细胞类型中的变异相关联。在此,我们引入一种称为单细胞可解释张量分解(scITD)的计算方法,通过考虑多种细胞类型间的联合表达变异来识别个体间变异的共同轴。scITD将每种细胞类型的表达矩阵组合成一个高阶矩阵,并使用塔克张量分解对结果进行因式分解。将scITD应用于115名狼疮患者和83名2019冠状病毒病患者的单细胞RNA测序数据,我们识别出与疾病严重程度和特定表型(如狼疮性肾炎)相关的协同细胞活动模式。scITD的结果还表明了可能介导细胞类型间协调的特定信号通路。总体而言,scITD为理解个体间细胞状态的协变提供了一种工具,这有助于深入了解定义和分层疾病的复杂过程。