Suppr超能文献

挖掘合成患者在加速临床试验方面的潜力:GIMEMA 关于急性髓系白血病患者的首次经验结果。

Unlocking the potential of synthetic patients for accelerating clinical trials: Results of the first GIMEMA experience on acute myeloid leukemia patients.

作者信息

Piciocchi Alfonso, Cipriani Marta, Messina Monica, Marconi Giovanni, Arena Valentina, Soddu Stefano, Crea Enrico, Feraco Maria Valeria, Ferrante Marco, La Sala Edoardo, Fazi Paola, Buccisano Francesco, Voso Maria Teresa, Martinelli Giovanni, Venditti Adriano, Vignetti Marco

机构信息

Data Center GIMEMA Foundation Rome Italy.

Department of Statistical Sciences University of Rome La Sapienza Rome Italy.

出版信息

EJHaem. 2024 Mar 15;5(2):353-359. doi: 10.1002/jha2.873. eCollection 2024 Apr.

Abstract

Artificial Intelligence has the potential to reshape the landscape of clinical trials through innovative applications, with a notable advancement being the emergence of synthetic patient generation. This process involves simulating cohorts of virtual patients that can either replace or supplement real individuals within trial settings. By leveraging synthetic patients, it becomes possible to eliminate the need for obtaining patient consent and creating control groups that mimic patients in active treatment arms. This method not only streamlines trial processes, reducing time and costs but also fortifies the protection of sensitive participant data. Furthermore, integrating synthetic patients amplifies trial efficiency by expanding the sample size. These straightforward and cost-effective methods also enable the development of personalized subject-specific models, enabling predictions of patient responses to interventions. Synthetic data holds great promise for generating real-world evidence in clinical trials while upholding rigorous confidentiality standards throughout the process. Therefore, this study aims to demonstrate the applicability and performance of these methods in the context of onco-hematological research, breaking through the theoretical and practical barriers associated with the implementation of artificial intelligence in medical trials.

摘要

人工智能有潜力通过创新应用重塑临床试验格局,其中一个显著进展是合成患者生成的出现。这一过程涉及模拟虚拟患者队列,这些虚拟患者可以在试验环境中替代或补充真实个体。通过利用合成患者,可以消除获取患者同意的需求,并创建模仿积极治疗组患者的对照组。这种方法不仅简化了试验流程,减少了时间和成本,还加强了对敏感参与者数据的保护。此外,整合合成患者通过扩大样本量提高了试验效率。这些直接且具有成本效益的方法还能够开发个性化的特定受试者模型,从而预测患者对干预措施的反应。合成数据在临床试验中生成真实世界证据方面具有巨大潜力,同时在整个过程中坚持严格的保密标准。因此,本研究旨在证明这些方法在肿瘤血液学研究背景下的适用性和性能,突破与在医学试验中实施人工智能相关的理论和实践障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f5/11020105/aee8fddd9ce0/JHA2-5-353-g001.jpg

相似文献

2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

本文引用的文献

2
Synthetic data as an enabler for machine learning applications in medicine.合成数据助力医学领域的机器学习应用。
iScience. 2022 Oct 13;25(11):105331. doi: 10.1016/j.isci.2022.105331. eCollection 2022 Nov 18.
3
Editorial Comment: Artificial Intelligence in Mammography-Our New Reality.
AJR Am J Roentgenol. 2022 Sep;219(3):381. doi: 10.2214/AJR.22.27345. Epub 2022 Jan 12.
6
Public perceptions on data sharing: key insights from the UK and the USA.公众对数据共享的看法:来自英国和美国的关键见解。
Lancet Digit Health. 2020 Sep;2(9):e444-e446. doi: 10.1016/S2589-7500(20)30161-8. Epub 2020 Jul 24.
10
In silico clinical trials: concepts and early adoptions.计算机临床试验:概念与早期应用。
Brief Bioinform. 2019 Sep 27;20(5):1699-1708. doi: 10.1093/bib/bby043.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验