Suppr超能文献

利用现有计划对头颈部放疗中深度学习器官轮廓进行大规模剂量评估。

Large-scale dose evaluation of deep learning organ contours in head-and-neck radiotherapy by leveraging existing plans.

作者信息

Mody Prerak, Huiskes Merle, Chaves-de-Plaza Nicolas F, Onderwater Alice, Lamsma Rense, Hildebrandt Klaus, Hoekstra Nienke, Astreinidou Eleftheria, Staring Marius, Dankers Frank

机构信息

Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.

HollandPTC consortium - Erasmus Medical Center, Rotterdam, Holland Proton Therapy Centre, Delft, Leiden University Medical Center (LUMC), Leiden and Delft University of Technology, Delft, The Netherlands.

出版信息

Phys Imaging Radiat Oncol. 2024 Mar 28;30:100572. doi: 10.1016/j.phro.2024.100572. eCollection 2024 Apr.

Abstract

BACKGROUND AND PURPOSE

Retrospective dose evaluation for organ-at-risk auto-contours has previously used small cohorts due to additional manual effort required for treatment planning on auto-contours. We aimed to do this at large scale, by a) proposing and assessing an automated plan optimization workflow that used existing clinical plan parameters and b) using it for head-and-neck auto-contour dose evaluation.

MATERIALS AND METHODS

Our automated workflow emulated our clinic's treatment planning protocol and reused existing clinical plan optimization parameters. This workflow recreated the original clinical plan () with manual contours () and evaluated the dose effect () on 70 photon and 30 proton plans of head-and-neck patients. As a use-case, the same workflow (and parameters) created a plan using auto-contours () of eight head-and-neck organs-at-risk from a commercial tool and evaluated their dose effect ().

RESULTS

For plan recreation (), our workflow had a median impact of 1.0% and 1.5% across dose metrics of auto-contours, for photon and proton respectively. Computer time of automated planning was 25% (photon) and 42% (proton) of manual planning time. For auto-contour evaluation (), we noticed an impact of 2.0% and 2.6% for photon and proton radiotherapy. All evaluations had a median NTCP (Normal Tissue Complication Probability) less than 0.3%.

CONCLUSIONS

The plan replication capability of our automated program provides a blueprint for other clinics to perform auto-contour dose evaluation with large patient cohorts. Finally, despite geometric differences, auto-contours had a minimal median dose impact, hence inspiring confidence in their utility and facilitating their clinical adoption.

摘要

背景与目的

由于在自动轮廓上进行治疗计划需要额外的人工操作,此前对危及器官自动轮廓的回顾性剂量评估仅在小队列中进行。我们旨在大规模开展此项工作,方法如下:a) 提出并评估一种使用现有临床计划参数的自动计划优化工作流程;b) 将其用于头颈部自动轮廓剂量评估。

材料与方法

我们的自动工作流程模拟了我们诊所的治疗计划方案,并复用了现有的临床计划优化参数。该工作流程使用手动轮廓重新创建了原始临床计划,并评估了对头颈部患者的70个光子计划和30个质子计划的剂量效应。作为一个用例,相同的工作流程(和参数)使用商业工具对头颈部八个危及器官的自动轮廓创建了一个计划,并评估了它们的剂量效应。

结果

对于计划重现,我们的工作流程在自动轮廓的剂量指标上,对光子和质子计划的中位数影响分别为1.0%和1.5%。自动规划的计算机时间分别为手动规划时间的25%(光子)和42%(质子)。对于自动轮廓评估,我们注意到光子和质子放疗的影响分别为2.0%和2.6%。所有评估的中位正常组织并发症概率(NTCP)均小于0.3%。

结论

我们自动程序的计划复制能力为其他诊所对大量患者队列进行自动轮廓剂量评估提供了蓝图。最后,尽管存在几何差异,但自动轮廓的中位数剂量影响最小,因此增强了对其效用的信心并促进了其临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/304d/11021837/3afb20d1d3e1/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验