Suppr超能文献

人工智能揭示白内障检测与治疗中的种族差异。

Artificial Intelligence (AI) Reveals Ethnic Disparities in Cataract Detection and Treatment.

作者信息

Palme Christoph, Hafner Franziska Sofia, Hafner Lena, Peifer Theodor Peter, Huber Anna Lena, Steger Bernhard

机构信息

Department of Ophthalmology, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.

Oxford Internet Institute, University of Oxford, Oxford, UK.

出版信息

Ophthalmol Ther. 2024 Jun;13(6):1683-1692. doi: 10.1007/s40123-024-00945-8. Epub 2024 Apr 20.

Abstract

INTRODUCTION

The aim of this work is to identify patients at risk of limited access to healthcare through artificial intelligence using a name-ethnicity classifier (NEC) analyzing the clinical stage of cataract at diagnosis and preoperative visual acuity.

METHODS

This retrospective, cross-sectional study includes patients seen in the cataract clinic of a tertiary care hospital between September 2017 and February 2020 with subsequent cataract surgery in at least one eye. We analyzed 4971 patients and 8542 eyes undergoing surgery.

RESULTS

The NEC identified 360 patients with names classified as 'non-German' compared to 4611 classified as 'German'. Advanced cataract (7 vs. 5%; p = 0.025) was significantly associated with group 'non-German'. Mean best-corrected visual acuity in group 'non-German' was 0.464 ± 0.406 (LogMAR), and in group 'German' was 0.420 ± 0.334 (p = 0.009). This difference remained significant after exclusion of patients with non-lenticular ocular comorbidities. Surgical time and intraoperative complications did not differ between the groups. Retrobulbar or general anesthesia was chosen significantly more frequently over topical anesthesia in group 'non-German' compared to group 'German' (24 vs. 18% respectively; p < 0.001).

CONCLUSIONS

This study shows that artificial intelligence is able to uncover health disparities between people with German compared to non-German names using NECs. Patients with non-German names, possibly facing various social barriers to healthcare access such as language barriers, have more advanced cataracts and worse visual acuity upon presentation. Artificial intelligence may prove useful for healthcare providers to discover and counteract such inequalities and establish tailored preventive measures to decrease morbidity in vulnerable population subgroups.

摘要

引言

本研究的目的是通过使用名称-种族分类器(NEC)分析白内障诊断时的临床分期和术前视力,利用人工智能识别获得医疗服务受限风险的患者。

方法

这项回顾性横断面研究纳入了2017年9月至2020年2月期间在一家三级护理医院白内障门诊就诊且至少一只眼睛随后接受白内障手术的患者。我们分析了4971例患者和8542只接受手术的眼睛。

结果

NEC识别出360例姓名被归类为“非德国裔”的患者,相比之下,4611例被归类为“德国裔”。晚期白内障(7%对5%;p = 0.025)与“非德国裔”组显著相关。“非德国裔”组的平均最佳矫正视力为0.464±0.406(LogMAR),“德国裔”组为0.420±0.334(p = 0.009)。在排除非晶状体眼部合并症患者后,这种差异仍然显著。两组之间的手术时间和术中并发症没有差异。与“德国裔”组相比,“非德国裔”组选择球后麻醉或全身麻醉明显比表面麻醉更频繁(分别为24%对18%;p < 0.001)。

结论

本研究表明,人工智能能够利用NEC揭示德国裔与非德国裔患者之间的健康差异。非德国裔患者可能面临诸如语言障碍等各种获得医疗服务的社会障碍,就诊时白内障更严重,视力更差。人工智能可能对医疗服务提供者发现并消除此类不平等现象以及制定针对性的预防措施以降低弱势群体亚组的发病率有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12df/11109066/32124da4e811/40123_2024_945_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验