Suppr超能文献

磷酸铁锂锂离子电池热失控气体扩散与爆炸特性模拟

Simulation of Dispersion and Explosion Characteristics of LiFePO Lithium-Ion Battery Thermal Runaway Gases.

作者信息

Zhang Mingjie, Yang Kai, Zhang Qianjun, Chen Hao, Fan Maosong, Geng Mengmeng, Wei Bin, Xie Bin

机构信息

China Electric Power Research Institute, Beijing 100192, China.

Jescom Software (Shanghai) Co., Shanghai 200090, China.

出版信息

ACS Omega. 2024 Apr 4;9(15):17036-17044. doi: 10.1021/acsomega.3c08709. eCollection 2024 Apr 16.

Abstract

In recent years, as the installed scale of battery energy storage systems (BESS) continues to expand, energy storage system safety incidents have been a fast-growing trend, sparking widespread concern from all walks of life. During the thermal runaway (TR) process of lithium-ion batteries, a large amount of combustible gas is released. In this paper, the 105 Ah lithium iron phosphate battery TR test was conducted, and the flammable gas components released from the battery TR were detected. The simulation tests of the diffusion and explosion characteristics of lithium iron phosphate battery's (LFP) TR gases with different numbers and positions in the BESS were carried out using FLACS simulation software. It was found that the more batteries TR simultaneously, the shorter the time for the combustible gas concentration in the energy storage cabin to reach the explosion limit. When 48 batteries were in TR simultaneously in the energy storage cabin, the shortest time was 9.8 s, and the further the location of the fire is from the hatch, the largest explosion overpressure is generated to the hatch, up to 583 kPa. When the gas generated by the TR of 48 batteries explodes, the maximum explosion overpressure at 5 m outside the energy storage cabin hatch is more significant than 40 kPa, which will cause serious injury to humans. The causes of TR of batteries in prefabricated chambers are complex, and the location and amount of thermal runaway of batteries as well as the diffusion of combustible fumes can have different effects on the external environment. The research results can provide support for the safety design of BESS.

摘要

近年来,随着电池储能系统(BESS)装机规模不断扩大,储能系统安全事故呈快速增长趋势,引发各界广泛关注。在锂离子电池热失控(TR)过程中,会释放大量可燃气体。本文进行了105 Ah磷酸铁锂电池TR试验,检测了电池TR过程中释放的可燃气体成分。利用FLACS模拟软件对不同数量和位置的磷酸铁锂电池(LFP)TR气体在BESS中的扩散和爆炸特性进行了模拟试验。研究发现,同时发生热失控的电池数量越多,储能舱内可燃气体浓度达到爆炸极限的时间越短。当储能舱内48节电池同时发生热失控时,最短时间为9.8 s,着火位置离舱门越远,对舱门产生的爆炸超压越大,可达583 kPa。当48节电池热失控产生的气体爆炸时,储能舱舱门外5 m处的最大爆炸超压超过40 kPa,会对人体造成严重伤害。预制舱内电池热失控原因复杂,电池热失控位置和数量以及可燃烟气扩散对外界环境会产生不同影响。研究结果可为BESS安全设计提供支撑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09c8/11025091/ca7c8ef3b8bc/ao3c08709_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验