Suppr超能文献

异步(无提示)脑机接口系统识别方法的比较:基于40类稳态视觉诱发电位数据集的研究

Comparison of recognition methods for an asynchronous (un-cued) BCI system: an investigation with 40-class SSVEP dataset.

作者信息

Kim Heegyu, Won Kyungho, Ahn Minkyu, Jun Sung Chan

机构信息

School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Bukgu, Gwangju, 61005 Korea.

Hybrid Team, Inria, Univ Rennes, IRISA, CNRS, F35000 Rennes, France.

出版信息

Biomed Eng Lett. 2024 Feb 23;14(3):617-630. doi: 10.1007/s13534-024-00357-4. eCollection 2024 May.

Abstract

Steady-state visual evoked potential (SSVEP)-based brain-computer Interface (BCI) has demonstrated the potential to manage multi-command targets to achieve high-speed communication. Recent studies on multi-class SSVEP-based BCI have focused on synchronous systems, which rely on predefined time and task indicators; thus, these systems that use passive approaches may be less suitable for practical applications. Asynchronous systems recognize the user's intention (whether or not the user is willing to use systems) from brain activity; then, after recognizing the user's willingness, they begin to operate by switching swiftly for real-time control. Consequently, various methodologies have been proposed to capture the user's intention. However, in-depth investigation of recognition methods in asynchronous BCI system is lacking. Thus, in this work, three recognition methods (power spectral density analysis, canonical correlation analysis (CCA), and support vector machine (SVM)) used widely in asynchronous SSVEP BCI systems were explored to compare their performance. Further, we categorized asynchronous systems into two approaches (1-stage and 2-stage) based upon the recognition process's design, and compared their performance. To do so, a 40-class SSVEP dataset collected from 40 subjects was introduced. Finally, we found that the CCA-based method in the 2-stage approach demonstrated statistically significantly higher performance with a sensitivity of 97.62 ± 02.06%, specificity of 76.50 ± 23.50%, and accuracy of 75.59 ± 10.09%. Thus, it is expected that the 2-stage approach together with CCA-based recognition and FB-CCA classification have good potential to be implemented in practical asynchronous SSVEP BCI systems.

摘要

基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)已展现出管理多指令目标以实现高速通信的潜力。近期关于基于多类SSVEP的BCI的研究主要集中在同步系统上,这些系统依赖于预定义的时间和任务指标;因此,这些采用被动方法的系统可能不太适合实际应用。异步系统从大脑活动中识别用户意图(用户是否愿意使用系统);然后,在识别出用户意愿后,它们通过迅速切换来开始实时控制操作。因此,已经提出了各种方法来捕捉用户意图。然而,对异步BCI系统中的识别方法缺乏深入研究。因此,在这项工作中,探索了在异步SSVEP BCI系统中广泛使用的三种识别方法(功率谱密度分析、典型相关分析(CCA)和支持向量机(SVM))以比较它们的性能。此外,我们根据识别过程的设计将异步系统分为两种方法(单阶段和两阶段),并比较它们的性能。为此,引入了从40名受试者收集的40类SSVEP数据集。最后,我们发现两阶段方法中基于CCA的方法在统计学上具有显著更高的性能,灵敏度为97.62±2.06%,特异性为76.50±23.50%,准确率为75.59±10.09%。因此,预计两阶段方法与基于CCA的识别和FB - CCA分类在实际的异步SSVEP BCI系统中具有良好的应用潜力。

相似文献

本文引用的文献

3
A Hybrid Asynchronous Brain-Computer Interface Combining SSVEP and EOG Signals.一种结合 SSVEP 和 EOG 信号的混合异步脑-机接口。
IEEE Trans Biomed Eng. 2020 Oct;67(10):2881-2892. doi: 10.1109/TBME.2020.2972747. Epub 2020 Feb 11.
4
A two-step idle-state detection method for SSVEP BCI.一种用于稳态视觉诱发电位脑机接口的两步空闲状态检测方法。
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3095-3098. doi: 10.1109/EMBC.2019.8857024.
6
A novel system of SSVEP-based human-robot coordination.一种基于 SSVEP 的新型人机协同系统。
J Neural Eng. 2019 Feb;16(1):016006. doi: 10.1088/1741-2552/aae1ba. Epub 2018 Sep 17.
7
Asynchronous Brain-Computer Interfacing Based on Mixed-Coded Visual Stimuli.基于混合编码视觉刺激的异步脑机接口。
IEEE Trans Biomed Eng. 2018 Sep;65(9):2119-2129. doi: 10.1109/TBME.2017.2785412. Epub 2017 Dec 20.
9
Brain-Computer Interface Spellers: A Review.脑机接口拼写器:综述
Brain Sci. 2018 Mar 30;8(4):57. doi: 10.3390/brainsci8040057.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验