Centre for Biomedical Cybernetics, University of Malta, Msida, Malta.
J Neural Eng. 2018 Oct;15(5):051001. doi: 10.1088/1741-2552/aaca6e. Epub 2018 Jun 5.
Despite the vast research aimed at improving the performance of steady-state visually evoked potential (SSVEP)-based brain-computer interfaces (BCIs), several limitations exist that restrict the use of such applications for long-term users in the real-world. One of the main challenges has been to reduce training time while maintaining good BCI performance. In view of this challenge, this survey identifies and compares the different training requirements of feature extraction methods for SSVEP-based BCIs.
This paper reviews the various state-of-the-art SSVEP feature extraction methods that have been developed and are most widely used in the literature.
The main contributions compared to existing reviews are the following: (i) a detailed summary, including a brief mathematical description of each feature extraction algorithm, providing a guide to the basic concepts of the state-of-the-art techniques for SSVEP-based BCIs found in literature; (ii) a categorisation of the training requirements of SSVEP-based methods into three categories, defined as training-free methods, subject-specific and subject-independent training methods; (iii) a comparative review of the training requirements of SSVEP feature extraction methods, providing a reference for future work on SSVEP-based BCIs.
This review highlights the strengths and weaknesses of the three categories of SSVEP training methods. Training-free systems are more practical but their performance is limited due to inter-subject variability resulting from the complex EEG activity. Feature extraction methods that incorporate some training data address this issue and in fact have outperformed training-free methods: subject-specific BCIs are tuned to the individual yielding the best performance at the cost of long, tiring training sessions making these methods unsuitable for everyday use; subject-independent BCIs that make use of training data from various subjects offer a good trade-off between training effort and performance, making these BCIs better suited for practical use.
尽管有大量研究致力于提高基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)的性能,但仍存在一些限制,这些限制限制了此类应用在现实世界中长期用户的使用。其中一个主要挑战是在保持良好 BCI 性能的同时减少训练时间。鉴于这一挑战,本调查确定并比较了基于 SSVEP 的 BCI 中特征提取方法的不同培训要求。
本文回顾了已开发并在文献中最广泛使用的各种最先进的 SSVEP 特征提取方法。
与现有综述相比,主要贡献如下:(i)详细总结,包括每个特征提取算法的简要数学描述,为文献中基于 SSVEP 的 BCI 的最新技术的基本概念提供指南;(ii)将基于 SSVEP 的方法的培训要求分为三类,定义为无培训方法、特定于主体和独立于主体的培训方法;(iii)对 SSVEP 特征提取方法的培训要求进行了比较性回顾,为基于 SSVEP 的 BCI 的未来工作提供了参考。
本综述突出了基于 SSVEP 的三种培训方法的优缺点。无培训系统更实用,但由于 EEG 活动的复杂性导致的个体间可变性,其性能受到限制。结合了一些训练数据的特征提取方法解决了这个问题,实际上已经超越了无培训方法:特定于主体的 BCI 针对个体进行调整,以在成本高昂、令人疲惫的培训课程的情况下获得最佳性能,因此这些方法不适合日常使用;利用来自不同主体的训练数据的独立于主体的 BCI 在培训工作量和性能之间提供了良好的折衷,因此这些 BCI 更适合实际使用。