Suppr超能文献

脑机接口拼写器:综述

Brain-Computer Interface Spellers: A Review.

作者信息

Rezeika Aya, Benda Mihaly, Stawicki Piotr, Gembler Felix, Saboor Abdul, Volosyak Ivan

机构信息

Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, 47533 Kleve, Germany.

出版信息

Brain Sci. 2018 Mar 30;8(4):57. doi: 10.3390/brainsci8040057.

Abstract

A Brain-Computer Interface (BCI) provides a novel non-muscular communication method via brain signals. A BCI-speller can be considered as one of the first published BCI applications and has opened the gate for many advances in the field. Although many BCI-spellers have been developed during the last few decades, to our knowledge, no reviews have described the different spellers proposed and studied in this vital field. The presented speller systems are categorized according to major BCI paradigms: P300, steady-state visual evoked potential (SSVEP), and motor imagery (MI). Different BCI paradigms require specific electroencephalogram (EEG) signal features and lead to the development of appropriate Graphical User Interfaces (GUIs). The purpose of this review is to consolidate the most successful BCI-spellers published since 2010, while mentioning some other older systems which were built explicitly for spelling purposes. We aim to assist researchers and concerned individuals in the field by illustrating the highlights of different spellers and presenting them in one review. It is almost impossible to carry out an objective comparison between different spellers, as each has its variables, parameters, and conditions. However, the gathered information and the provided taxonomy about different BCI-spellers can be helpful, as it could identify suitable systems for first-hand users, as well as opportunities of development and learning from previous studies for BCI researchers.

摘要

脑机接口(BCI)通过脑信号提供了一种全新的非肌肉通信方式。BCI 拼写器可被视为最早发表的 BCI 应用之一,为该领域的诸多进展打开了大门。尽管在过去几十年间已开发出许多 BCI 拼写器,但据我们所知,尚无综述描述过该重要领域中提出并研究的不同拼写器。本文所介绍的拼写器系统是根据主要的 BCI 范式进行分类的:P300、稳态视觉诱发电位(SSVEP)和运动想象(MI)。不同的 BCI 范式需要特定的脑电图(EEG)信号特征,并促使开发出合适的图形用户界面(GUI)。本综述的目的是整合自 2010 年以来发表的最成功的 BCI 拼写器,同时提及一些其他专门为拼写目的构建的早期系统。我们旨在通过阐述不同拼写器的亮点并将它们汇集于一篇综述中,来帮助该领域的研究人员和相关人士。由于每个拼写器都有其变量、参数和条件,几乎不可能对不同拼写器进行客观比较。然而,所收集的信息以及提供的关于不同 BCI 拼写器的分类法可能会有所帮助,因为它可以为初次使用者识别合适的系统,也能为 BCI 研究人员提供发展机遇以及从以往研究中学习的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad62/5924393/fb24f73790c2/brainsci-08-00057-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验