Suppr超能文献

机器学习整合超声心动图和临床数据以改善心肌梗死后生存预测

Machine learning integration of echocardiographic and clinical data to improve prediction of survival following myocardial infarction.

作者信息

Prasad Sandhir B, Scanlon Liam, Krishnan Anish, Ivy Chan Nicole, Mallouhi Michael, Vollbon William, Parsonage William, Khanna Sankalp, Lin Andrew, Atherton John J

机构信息

Department of Cardiology, Royal Brisbane and Women's Hospital, Herston Road, Brisbane, Queensland 4029, Australia.

Faculty of Medicine, University of Queensland, St Lucia, Queensland 4072, Australia.

出版信息

Eur Heart J Open. 2025 Jun 3;5(3):oeaf064. doi: 10.1093/ehjopen/oeaf064. eCollection 2025 May.

Abstract

AIMS

Machine learning (ML) could improve risk stratification following myocardial infarction (MI). However, previous ML studies for risk prediction following MI did not incorporate comprehensive echocardiographic data. This study sought to use machine learning (ML) to integrate comprehensive echocardiographic and clinical data for the predicting all-cause mortality following MI.

METHODS AND RESULTS

Retrospective study of consecutive patients admitted with MI to a tertiary referral hospital, with echocardiography performed within 24 h of admission. The cohort was randomly split into training (70%) and test (30%) sets. Two ML models (XGBoost and a neural network) were developed using echocardiographic and clinical data, and then compared with conventional logistic regression. The Shapley Additive exPlanations method was used for ML model interpretation. In the final study population of 3202 patients (mean age, 63.2 ± 12.5 years; 29.2% females), ST-elevation MI was present in 28.8%, and the mean cohort LVEF was 52.5 ± 11.2%. At a median follow-up of 4.5 years, there were 465 deaths. In the test set, XGBoost achieved the highest performance (AUC, 0.854), compared with logistic regression (AUC, 0.824; = 0.006) and the neural network (AUC, 0.808; = <0.001) for the prediction of death. In the XGBoost model, the highest-ranked predictors included age, renal function, echocardiographic left ventricular outflow velocity time integral, and diastolic parameters. Further, in nested ML models, the addition of echocardiographic parameters provided incremental value beyond clinical variables alone (AUC, 0.854 vs. 0.820; = 0.002).

CONCLUSION

ML integration of comprehensive echocardiographic data with clinical data could lead to improved prediction of survival following MI. Clinical implementation should be considered.

摘要

目的

机器学习(ML)可改善心肌梗死(MI)后的风险分层。然而,先前关于MI后风险预测的ML研究未纳入全面的超声心动图数据。本研究旨在使用机器学习(ML)整合全面的超声心动图和临床数据,以预测MI后的全因死亡率。

方法和结果

对一家三级转诊医院收治的连续MI患者进行回顾性研究,入院后24小时内进行超声心动图检查。该队列被随机分为训练集(70%)和测试集(30%)。使用超声心动图和临床数据开发了两个ML模型(XGBoost和神经网络),然后与传统逻辑回归进行比较。采用Shapley Additive exPlanations方法对ML模型进行解释。在最终的3202例患者研究人群中(平均年龄63.2±12.5岁;29.2%为女性),28.8%为ST段抬高型MI,队列平均左心室射血分数(LVEF)为52.5±11.2%。中位随访4.5年时,有465例死亡。在测试集中,XGBoost在预测死亡方面表现最佳(曲线下面积[AUC]为0.854),优于逻辑回归(AUC为0.824;P = 0.006)和神经网络(AUC为0.808;P = <0.001)。在XGBoost模型中,排名最高的预测因素包括年龄、肾功能、超声心动图左心室流出速度时间积分和舒张参数。此外,在嵌套的ML模型中,添加超声心动图参数比单独使用临床变量提供了更高的价值(AUC为0.854对0.820;P = 0.002)。

结论

将全面的超声心动图数据与临床数据进行ML整合可改善MI后生存率的预测。应考虑临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d12/12203351/797bdadc56d9/oeaf064_ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验