Department of Radiology, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio, USA.
Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Br J Radiol. 2023 Apr 1;96(1145):20220778. doi: 10.1259/bjr.20220778. Epub 2023 Mar 3.
In this proof-of-concept study, we aimed to develop deep-learning-based classifiers to identify rib fractures on frontal chest radiographs in children under 2 years of age.
This retrospective study included 1311 frontal chest radiographs (radiographs with rib fractures, = 653) from 1231 unique patients (median age: 4 m). Patients with more than one radiograph were included only in the training set. A binary classification was performed to identify the presence or absence of rib fractures using transfer learning and Resnet-50 and DenseNet-121 architectures. The area under the receiver operating characteristic curve (AUC-ROC) was reported. Gradient-weighted class activation mapping was used to highlight the region most relevant to the deep learning models' predictions.
On the validation set, the ResNet-50 and DenseNet-121 models obtained an AUC-ROC of 0.89 and 0.88, respectively. On the test set, the ResNet-50 model demonstrated an AUC-ROC of 0.84 with a sensitivity of 81% and specificity of 70%. The DenseNet-50 model obtained an AUC of 0.82 with 72% sensitivity and 79% specificity.
In this proof-of-concept study, a deep learning-based approach enabled the automatic detection of rib fractures in chest radiographs of young children with performances comparable to pediatric radiologists. Further evaluation of this approach on large multi-institutional data sets is needed to assess the generalizability of our results.
In this proof-of-concept study, a deep learning-based approach performed well in identifying chest radiographs with rib fractures. These findings provide further impetus to develop deep learning algorithms for identifying rib fractures in children, especially those with suspected physical abuse or non-accidental trauma.
在这项概念验证研究中,我们旨在开发基于深度学习的分类器,以识别 2 岁以下儿童的 frontal chest radiographs 中的肋骨骨折。
这项回顾性研究纳入了 1311 张 frontal chest radiographs(有肋骨骨折的 radiographs, = 653),来自 1231 名(中位年龄:4 个月)的患者。如果一名患者有超过一张的 radiographs,则仅将其纳入训练集。使用迁移学习和 Resnet-50 和 DenseNet-121 架构进行二元分类,以识别是否存在肋骨骨折。报告了受试者工作特征曲线下的面积(AUC-ROC)。使用梯度加权类激活映射突出深度学习模型预测最相关的区域。
在验证集上,ResNet-50 和 DenseNet-121 模型的 AUC-ROC 分别为 0.89 和 0.88。在测试集上,ResNet-50 模型的 AUC-ROC 为 0.84,灵敏度为 81%,特异性为 70%。DenseNet-50 模型的 AUC 为 0.82,灵敏度为 72%,特异性为 79%。
在这项概念验证研究中,基于深度学习的方法能够自动检测幼儿 chest radiographs 中的肋骨骨折,其性能与儿科放射科医生相当。需要进一步在大型多机构数据集上评估这种方法,以评估我们结果的泛化能力。
在这项概念验证研究中,基于深度学习的方法在识别 chest radiographs 中的肋骨骨折方面表现良好。这些发现为开发用于识别儿童肋骨骨折的深度学习算法提供了进一步的动力,特别是在怀疑有身体虐待或非意外创伤的情况下。