Suppr超能文献

基于补丁的深度学习方法在幼儿正位胸片肋骨骨折检测中的应用。

A Patch-Based Deep Learning Approach for Detecting Rib Fractures on Frontal Radiographs in Young Children.

机构信息

Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Department of Radiology, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA.

出版信息

J Digit Imaging. 2023 Aug;36(4):1302-1313. doi: 10.1007/s10278-023-00793-1. Epub 2023 Mar 10.

Abstract

Chest radiography is the modality of choice for the identification of rib fractures in young children and there is value for the development of computer-aided rib fracture detection in this age group. However, the automated identification of rib fractures on chest radiographs can be challenging due to the need for high spatial resolution in deep learning frameworks. A patch-based deep learning algorithm was developed to automatically detect rib fractures on frontal chest radiographs in children under 2 years old. A total of 845 chest radiographs of children 0-2 years old (median: 4 months old) were manually segmented for rib fractures by radiologists and served as the ground-truth labels. Image analysis utilized a patch-based sliding-window technique, to meet the high-resolution requirements for fracture detection. Standard transfer learning techniques used ResNet-50 and ResNet-18 architectures. Area-under-curve for precision-recall (AUC-PR) and receiver-operating-characteristic (AUC-ROC), along with patch and whole-image classification metrics, were reported. On the test patches, the ResNet-50 model showed AUC-PR and AUC-ROC of 0.25 and 0.77, respectively, and the ResNet-18 showed an AUC-PR of 0.32 and AUC-ROC of 0.76. On the whole-radiograph level, the ResNet-50 had an AUC-ROC of 0.74 with 88% sensitivity and 43% specificity in identifying rib fractures, and the ResNet-18 had an AUC-ROC of 0.75 with 75% sensitivity and 60% specificity in identifying rib fractures. This work demonstrates the utility of patch-based analysis for detection of rib fractures in children under 2 years old. Future work with large cohorts of multi-institutional data will improve the generalizability of these findings to patients with suspicion of child abuse.

摘要

胸部 X 线摄影是识别幼儿肋骨骨折的首选方式,因此开发适用于该年龄段的计算机辅助肋骨骨折检测方法具有一定价值。然而,由于深度学习框架需要高空间分辨率,因此自动识别胸部 X 光片中的肋骨骨折具有一定挑战性。本研究开发了一种基于补丁的深度学习算法,用于自动检测 2 岁以下儿童的正位胸部 X 光片中的肋骨骨折。共 845 张 0-2 岁儿童的胸部 X 光片(中位数:4 个月)由放射科医生手动分割肋骨骨折作为真实标签。图像分析采用基于补丁的滑动窗口技术,以满足骨折检测的高分辨率要求。标准的迁移学习技术使用了 ResNet-50 和 ResNet-18 架构。报告了精度-召回曲线下的面积 (AUC-PR) 和接收者操作特征 (AUC-ROC)、以及补丁和全图像分类指标。在测试补丁上,ResNet-50 模型的 AUC-PR 和 AUC-ROC 分别为 0.25 和 0.77,ResNet-18 模型的 AUC-PR 为 0.32,AUC-ROC 为 0.76。在全射线照片水平上,ResNet-50 识别肋骨骨折的 AUC-ROC 为 0.74,敏感度为 88%,特异性为 43%,ResNet-18 识别肋骨骨折的 AUC-ROC 为 0.75,敏感度为 75%,特异性为 60%。这项工作证明了基于补丁的分析在检测 2 岁以下儿童肋骨骨折方面的实用性。未来利用多机构大样本队列的数据将提高这些发现对怀疑虐待儿童的患者的泛化能力。

相似文献

本文引用的文献

2
Training Strategies for Radiology Deep Learning Models in Data-limited Scenarios.数据受限场景下放射学深度学习模型的训练策略
Radiol Artif Intell. 2021 Oct 6;3(6):e210014. doi: 10.1148/ryai.2021210014. eCollection 2021 Nov.
4
The Effect of Image Resolution on Deep Learning in Radiography.图像分辨率对放射成像深度学习的影响
Radiol Artif Intell. 2020 Jan 22;2(1):e190015. doi: 10.1148/ryai.2019190015. eCollection 2020 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验