Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA.
Ergonomics. 2024 Nov;67(11):1596-1611. doi: 10.1080/00140139.2024.2343949. Epub 2024 Apr 22.
Wearable inertial measurement units (IMUs) are used increasingly to estimate biomechanical exposures in lifting-lowering tasks. The objective of the study was to develop and evaluate predictive models for estimating relative hand loads and two other critical biomechanical exposures to gain a comprehensive understanding of work-related musculoskeletal disorders in lifting. We collected 12,480 lifting-lowering phases from 26 subjects (15 men and 11 women) performing manual lifting-lowering tasks with hand loads (0-22.7 kg) at varied workstation heights and handling modes. We implemented a model, that sequentially classified risk factors, including workstation height, handling mode, and relative hand load. Our algorithm detected lifting-lowering phases (>97.8%) with mean onset errors of 0.12 and 0.2 seconds for lifting and lowering phases. It estimated workstation height (>98.5%), handling mode (>87.1%), and relative hand load (mean absolute errors of 5.6-5.8%) across conditions, highlighting the benefits of data-driven models in deriving lifting-lowering occurrences, timing, and critical risk factors from continuous IMU-based kinematics.
可穿戴惯性测量单元 (IMU) 越来越多地用于估计举重任务中的生物力学暴露情况。本研究的目的是开发和评估预测模型,以估计相对手部负荷和另外两个关键生物力学暴露情况,从而全面了解与举重相关的肌肉骨骼疾病。我们从 26 名受试者(15 名男性和 11 名女性)中收集了 12480 个举重升降阶段,他们以不同的工作台高度和处理模式进行手动举重升降任务,手部负荷为(0-22.7kg)。我们实施了一种模型,该模型依次对危险因素进行分类,包括工作台高度、处理模式和相对手部负荷。我们的算法检测到举重升降阶段(>97.8%),举重和降低阶段的平均起始误差分别为 0.12 和 0.2 秒。它在各种条件下估计了工作台高度(>98.5%)、处理模式(>87.1%)和相对手部负荷(平均绝对误差为 5.6-5.8%),突出了数据驱动模型在从基于连续 IMU 的运动学中得出举重升降发生、时间和关键危险因素方面的优势。