Department of Industrial and Systems Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA, USA.
Department of Industrial and Systems Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA, USA.
Appl Ergon. 2024 Sep;119:104285. doi: 10.1016/j.apergo.2024.104285. Epub 2024 May 25.
We used an armband with embedded surface electromyography (sEMG) electrodes, together with machine-learning (ML) models, to automatically detect lifting-lowering activities and classify hand loads. Nine healthy participants (4 male and 5 female) completed simulated lifting-lowering tasks in various conditions and with two different hand loads (2.3 and 6.8 kg). We compared three sEMG signal feature sets (i.e., time, frequency, and a combination of both domains) and three ML classifiers (i.e., Random Forest, Support Vector Machine, and Logistic Regression). Both Random Forest and Support Vector Machine models, using either time-domain or time- and frequency-domain features, yielded the best performance in detecting lifts, with respective accuracies of 79.2% (start) and 86.7% (end). Similarly, both ML models yielded the highest accuracy (80.9%) in classifying the two hand loads, regardless of the sEMG features used, emphasizing the potential of sEMG armbands for assessing exposure and risks in occupational lifting tasks.
我们使用带有嵌入式表面肌电图 (sEMG) 电极的臂带,结合机器学习 (ML) 模型,自动检测升降活动并对手部负荷进行分类。九名健康参与者(4 名男性和 5 名女性)在不同条件下完成了模拟升降任务,并使用两种不同的手部负荷(2.3 千克和 6.8 千克)。我们比较了三个 sEMG 信号特征集(即时域、频域和两者的组合)和三个 ML 分类器(即随机森林、支持向量机和逻辑回归)。使用时域或时域和频域特征的随机森林和支持向量机模型在检测升降运动方面表现最佳,准确率分别为 79.2%(开始)和 86.7%(结束)。同样,无论使用哪种 sEMG 特征,两种 ML 模型在分类两种手部负荷方面都具有最高的准确率(80.9%),这强调了 sEMG 臂带在评估职业升降任务中的暴露和风险方面的潜力。