Suppr超能文献

传感器特征输入对简单运动中关节角度预测的影响。

The Effect of Sensor Feature Inputs on Joint Angle Prediction across Simple Movements.

机构信息

Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA.

Department of Industrial & Systems Engineering, Auburn University, Auburn, AL 36849, USA.

出版信息

Sensors (Basel). 2024 Jun 5;24(11):3657. doi: 10.3390/s24113657.

Abstract

The use of wearable sensors, such as inertial measurement units (IMUs), and machine learning for human intent recognition in health-related areas has grown considerably. However, there is limited research exploring how IMU quantity and placement affect human movement intent prediction (HMIP) at the joint level. The objective of this study was to analyze various combinations of IMU input signals to maximize the machine learning prediction accuracy for multiple simple movements. We trained a Random Forest algorithm to predict future joint angles across these movements using various sensor features. We hypothesized that joint angle prediction accuracy would increase with the addition of IMUs attached to adjacent body segments and that non-adjacent IMUs would not increase the prediction accuracy. The results indicated that the addition of adjacent IMUs to current joint angle inputs did not significantly increase the prediction accuracy (RMSE of 1.92° vs. 3.32° at the ankle, 8.78° vs. 12.54° at the knee, and 5.48° vs. 9.67° at the hip). Additionally, including non-adjacent IMUs did not increase the prediction accuracy (RMSE of 5.35° vs. 5.55° at the ankle, 20.29° vs. 20.71° at the knee, and 14.86° vs. 13.55° at the hip). These results demonstrated how future joint angle prediction during simple movements did not improve with the addition of IMUs alongside current joint angle inputs.

摘要

可穿戴传感器(如惯性测量单元(IMU))和机器学习在健康相关领域的人类意图识别中得到了广泛应用。然而,对于 IMU 的数量和位置如何影响关节水平的人类运动意图预测(HMIP),研究还很有限。本研究的目的是分析各种 IMU 输入信号的组合,以最大限度地提高机器学习对多种简单运动的预测准确性。我们使用各种传感器特征训练随机森林算法来预测这些运动中的未来关节角度。我们假设,随着附加到相邻身体部位的 IMU 的增加,关节角度预测准确性会提高,而不相邻的 IMU 不会提高预测准确性。结果表明,在当前关节角度输入中添加相邻 IMU 并不会显著提高预测准确性(踝关节的 RMSE 从 1.92°增加到 3.32°,膝关节从 8.78°增加到 12.54°,髋关节从 5.48°增加到 9.67°)。此外,包含不相邻的 IMU 也不会提高预测准确性(踝关节的 RMSE 从 5.35°增加到 5.55°,膝关节从 20.29°增加到 20.71°,髋关节从 14.86°增加到 13.55°)。这些结果表明,在进行简单运动时,未来关节角度的预测并不会随着当前关节角度输入的增加而通过添加 IMU 得到改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/673a/11175352/be82760e77b4/sensors-24-03657-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验