Suppr超能文献

SifiNet:一种用于识别特征基因集和注释细胞的强大而准确的方法。

SifiNet: a robust and accurate method to identify feature gene sets and annotate cells.

机构信息

Department of Biostatistics and Bioinformatics, Duke University, USA.

Department of Molecular Genetics and Microbiology, Duke University, USA.

出版信息

Nucleic Acids Res. 2024 May 22;52(9):e46. doi: 10.1093/nar/gkae307.

Abstract

SifiNet is a robust and accurate computational pipeline for identifying distinct gene sets, extracting and annotating cellular subpopulations, and elucidating intrinsic relationships among these subpopulations. Uniquely, SifiNet bypasses the cell clustering stage, commonly integrated into other cellular annotation pipelines, thereby circumventing potential inaccuracies in clustering that may compromise subsequent analyses. Consequently, SifiNet has demonstrated superior performance in multiple experimental datasets compared with other state-of-the-art methods. SifiNet can analyze both single-cell RNA and ATAC sequencing data, thereby rendering comprehensive multi-omic cellular profiles. It is conveniently available as an open-source R package.

摘要

SifiNet 是一个强大而准确的计算流程,用于识别不同的基因集,提取和注释细胞亚群,并阐明这些亚群之间的内在关系。独特的是,SifiNet 绕过了通常集成到其他细胞注释流程中的细胞聚类阶段,从而避免了聚类中的潜在不准确之处,这些不准确之处可能会影响后续分析。因此,SifiNet 在多个实验数据集上的表现优于其他最先进的方法。SifiNet 可以分析单细胞 RNA 和 ATAC 测序数据,从而提供全面的多组学细胞图谱。它作为一个开源的 R 包方便使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7682/11109959/9c71d8ff26ca/gkae307figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验