Han Dong-Yeob, Kim Saehun, Nam Seoha, Lee Gayoung, Bae Hongyeul, Kim Jin Hong, Choi Nam-Soon, Song Gyujin, Park Soojin
Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
Adv Sci (Weinh). 2024 Jul;11(25):e2402156. doi: 10.1002/advs.202402156. Epub 2024 Apr 22.
Lithium metal anode (LMA) emerges as a promising candidate for lithium (Li)-based battery chemistries with high-energy-density. However, inhomogeneous charge distribution from the unbalanced ion/electron transport causes dendritic Li deposition, leading to "dead Li" and parasitic reactions, particularly at high Li utilization ratios (low negative/positive ratios in full cells). Herein, an innovative LMA structural model deploying a hyperporous/hybrid conductive architecture is proposed on single-walled carbon nanotube film (HCA/C), fabricated through a nonsolvent induced phase separation process. This design integrates ionic polymers with conductive carbon, offering a substantial improvement over traditional metal current collectors by reducing the weight of LMA and enabling high-energy-density batteries. The HCA/C promotes uniform lithium deposition even under rapid charging (up to 5 mA cm) owing to its efficient mixed ion/electron conduction pathways. Thus, the HCA/C demonstrates stable cycling for 200 cycles with a low negative/positive ratio of 1.0 when paired with a LiNiCoMnO cathode (areal capacity of 5.0 mAh cm). Furthermore, a stacked pouch-type full cell using HCA/C realizes a high energy density of 344 Wh kg /951 Wh L based on the total mass of the cell, exceeding previously reported pouch-type full cells. This work paves the way for LMA development in high-energy-density Li metal batteries.
锂金属阳极(LMA)作为一种具有高能量密度的锂基电池化学体系的有前途的候选者而出现。然而,不平衡的离子/电子传输导致的不均匀电荷分布会引起锂枝晶沉积,从而导致“死锂”和寄生反应,特别是在高锂利用率(全电池中低负极/正极比)的情况下。在此,提出了一种在单壁碳纳米管薄膜(HCA/C)上部署超多孔/混合导电结构的创新LMA结构模型,该模型通过非溶剂诱导相分离过程制备。这种设计将离子聚合物与导电碳结合在一起,通过减轻LMA的重量并实现高能量密度电池,相比传统金属集流体有了显著改进。由于其高效的混合离子/电子传导途径,即使在快速充电(高达5 mA cm)下,HCA/C也能促进锂的均匀沉积。因此,当与LiNiCoMnO阴极(面积容量为5.0 mAh cm)配对时,HCA/C在低负极/正极比为1.0的情况下展示了200次循环的稳定循环。此外,使用HCA/C的堆叠软包型全电池基于电池的总质量实现了344 Wh kg /951 Wh L的高能量密度,超过了先前报道的软包型全电池。这项工作为高能量密度锂金属电池中LMA的发展铺平了道路。