Department of Urology, Jules Bordet Institute-Erasme Hospital, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Rue Meylemeersch 90, 1070, Brussels, Belgium.
Department of Urology, Clinique Saint-Augustin, Bordeaux, France.
World J Urol. 2024 Apr 22;42(1):247. doi: 10.1007/s00345-024-04966-7.
Accurate prediction of extraprostatic extension (EPE) is crucial for decision-making in radical prostatectomy (RP), especially in nerve-sparing strategies. Martini et al. introduced a three-tier algorithm for predicting contralateral EPE in unilateral high-risk prostate cancer (PCa). The aim of the study is to externally validate this model in a multicentric European cohort of patients.
The data from 208 unilateral high-risk PCa patients diagnosed through magnetic resonance imaging (MRI)-targeted and systematic biopsies, treated with RP between January 2016 and November 2021 at eight referral centers were collected. The evaluation of model performance involved measures such as discrimination (AUC), calibration, and decision-curve analysis (DCA) following TRIPOD guidelines. In addition, a comparison was made with two established multivariable logistic regression models predicting the risk of side specific EPE for assessment purposes.
Overall, 38%, 48%, and 14% of patients were categorized as low, intermediate, and high-risk groups according to Martini et al.'s model, respectively. At final pathology, EPE on the contralateral prostatic lobe occurred in 6.3%, 12%, and 34% of patients in the respective risk groups. The algorithm demonstrated acceptable discrimination (AUC 0.68), comparable to other multivariable logistic regression models (p = 0.3), adequate calibration and the highest net benefit in DCA. The limitations include the modest sample size, retrospective design, and lack of central revision.
Our findings endorse the algorithm's commendable performance, supporting its utility in guiding treatment decisions for unilateral high-risk PCa patients.
准确预测前列腺外延伸(EPE)对于根治性前列腺切除术(RP)的决策至关重要,尤其是在保留神经的策略中。Martini 等人提出了一种用于预测单侧高危前列腺癌(PCa)对侧 EPE 的三层次算法。本研究旨在通过多中心欧洲患者队列对该模型进行外部验证。
收集了 208 例通过磁共振成像(MRI)靶向和系统活检诊断的单侧高危 PCa 患者的数据,这些患者于 2016 年 1 月至 2021 年 11 月在 8 个转诊中心接受 RP 治疗。评估模型性能的指标包括区分度(AUC)、校准和基于 TRIPOD 指南的决策曲线分析(DCA)。此外,还与两种用于评估侧特异性 EPE 风险的既定多变量逻辑回归模型进行了比较。
根据 Martini 等人的模型,所有患者中 38%、48%和 14%分别被归类为低、中、高危组。在最终的病理结果中,相应风险组中对侧前列腺叶 EPE 的发生率分别为 6.3%、12%和 34%。该算法表现出可接受的区分度(AUC 0.68),与其他多变量逻辑回归模型相当(p=0.3),校准良好,在 DCA 中具有最高的净收益。局限性包括样本量较小、回顾性设计和缺乏中心复查。
我们的研究结果支持该算法的出色性能,支持其在指导单侧高危 PCa 患者治疗决策中的应用。