Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2317291121. doi: 10.1073/pnas.2317291121. Epub 2024 Apr 22.
Ribonucleotide reductases (RNRs) are essential enzymes that catalyze the de novo transformation of nucleoside 5'-di(tri)phosphates [ND(T)Ps, where N is A, U, C, or G] to their corresponding deoxynucleotides. Despite the diversity of factors required for function and the low sequence conservation across RNRs, a unifying apparatus consolidating RNR activity is explored. We combine aspects of the protein subunit simplicity of class II RNR with a modified version of class la photoRNRs that initiate radical chemistry with light to engineer a mimic of a class II enzyme. The design of this RNR involves fusing a truncated form of the active site containing α subunit with the functionally important C-terminal tail of the radical-generating β subunit to render a chimeric RNR. Inspired by a recent cryo-EM structure, a [Re] photooxidant is located adjacent to Y[β], which is an essential component of the radical transport pathway in class I RNRs. Combination of this RNR photochimera with cytidine diphosphate (CDP), adenosine triphosphate (ATP), and light resulted in the generation of Y• along with production of deoxycytidine diphosphate (dCDP) and cytosine. The photoproducts reflect an active site chemistry consistent with both the consensus mechanism of RNR and chemistry observed when RNR is inactivated by mechanism-based inhibitors in the active site. The enzymatic activity of the RNR photochimera in the absence of any β metallocofactor highlights the adaptability of the 10-stranded αβ barrel finger loop to support deoxynucleotide formation and accommodate the design of engineered RNRs.
核糖核苷酸还原酶(RNRs)是催化核苷 5'-二(三)磷酸 [ND(T)Ps,其中 N 是 A、U、C 或 G] 转化为相应脱氧核苷酸的必需酶。尽管功能所需的因素多种多样,而且 RNRs 之间的序列保守性较低,但仍探索了一种统一的装置来整合 RNR 活性。我们结合了 II 类 RNR 的蛋白亚基简单性的方面,以及用光引发自由基化学的改良版 la 类 photoRNR,来设计一种 II 类酶的模拟物。该 RNR 的设计涉及融合含有 α 亚基的活性位点的截断形式与产生自由基的 β 亚基的功能重要的 C 末端尾巴,以产生嵌合 RNR。受最近的冷冻电镜结构的启发,[Re]光氧化剂位于 Y[β]旁边,这是 I 类 RNR 中自由基传输途径的重要组成部分。将这种 RNR 光化学物与胞苷二磷酸 (CDP)、三磷酸腺苷 (ATP) 和光结合使用,导致 Y•的产生以及脱氧胞苷二磷酸 (dCDP)和胞嘧啶的产生。光产物反映了与 RNR 的共识机制一致的活性位点化学,以及当 RNR 被活性位点中的基于机制的抑制剂失活时观察到的化学。在没有任何β金属辅因子的情况下,RNR 光化学物的酶活性突出了 10 链αβ桶指环的适应性,以支持脱氧核苷酸的形成并适应工程化 RNR 的设计。