Lin Qinghui, Parker Mackenzie J, Taguchi Alexander T, Ravichandran Kanchana, Kim Albert, Kang Gyunghoon, Shao Jimin, Drennan Catherine L, Stubbe JoAnne
From the Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China and.
the Departments of Chemistry and.
J Biol Chem. 2017 Jun 2;292(22):9229-9239. doi: 10.1074/jbc.M117.783092. Epub 2017 Apr 4.
Ribonucleotide reductases (RNRs) catalyze the conversion of nucleoside diphosphate substrates (S) to deoxynucleotides with allosteric effectors (e) controlling their relative ratios and amounts, crucial for fidelity of DNA replication and repair. class Ia RNR is composed of α and β subunits that form a transient, active α2β2 complex. The RNR is rate-limited by S/e-dependent conformational change(s) that trigger the radical initiation step through a pathway of 35 Å across the subunit (α/β) interface. The weak subunit affinity and complex nucleotide-dependent quaternary structures have precluded a molecular understanding of the kinetic gating mechanism(s) of the RNR machinery. Using a docking model of α2β2 created from X-ray structures of α and β and conserved residues from a new subclassification of the Ia RNR (Iag), we identified and investigated four residues at the α/β interface (Glu and Glu in β2 and Arg and Arg in α2) of potential interest in kinetic gating. Mutation of each residue resulted in loss of activity and with the exception of E52Q-β2, weakened subunit affinity. An RNR mutant with 2,3,5-trifluorotyrosine radical (FY) replacing the stable Tyr in WT-β2, a mutation that partly overcomes conformational gating, was placed in the E52Q background. Incubation of this double mutant with His-α2/S/e resulted in an RNR capable of catalyzing pathway-radical formation (Tyr-β2), 0.5 eq of dCDP/FY, and formation of an α2β2 complex that is isolable in pulldown assays over 2 h. Negative stain EM images with S/e (GDP/TTP) revealed the uniformity of the α2β2 complex formed.
核糖核苷酸还原酶(RNRs)催化核苷二磷酸底物(S)转化为脱氧核苷酸,变构效应物(e)控制着它们的相对比例和数量,这对DNA复制和修复的保真度至关重要。I类RNR由α和β亚基组成,形成一个瞬时活性的α2β2复合物。RNR的速率受S/e依赖性构象变化限制,该变化通过跨越亚基(α/β)界面35 Å的途径触发自由基引发步骤。亚基亲和力弱和复杂的核苷酸依赖性四级结构阻碍了对RNR机制动力学门控机制的分子理解。利用由α和β的X射线结构以及Ia RNR(Iag)新亚分类中的保守残基创建的α2β2对接模型,我们鉴定并研究了α/β界面上四个可能与动力学门控有关的残基(β2中的Glu和Glu以及α2中的Arg和Arg)。每个残基的突变导致活性丧失,除了E52Q-β2外,亚基亲和力减弱。将一个用2,3,5-三氟酪氨酸自由基(FY)取代野生型-β2中稳定酪氨酸的RNR突变体置于E52Q背景中,该突变部分克服了构象门控。将此双突变体与His-α2/S/e一起孵育,得到一种能够催化途径自由基形成(酪氨酸-β2)、0.5当量dCDP/FY并形成可在下拉试验中2小时内分离的α2β2复合物的RNR。用S/e(GDP/TTP)进行的负染电子显微镜图像显示形成的α2β2复合物具有均匀性。