Suppr超能文献

靶向精确 RNA 共识测序(tARC-seq)揭示了影响 SARS-CoV-2 变异的复制错误机制。

Targeted accurate RNA consensus sequencing (tARC-seq) reveals mechanisms of replication error affecting SARS-CoV-2 divergence.

机构信息

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.

Baylor College of Medicine Medical Scientist Training Program, Houston, TX, USA.

出版信息

Nat Microbiol. 2024 May;9(5):1382-1392. doi: 10.1038/s41564-024-01655-4. Epub 2024 Apr 22.

Abstract

RNA viruses, like SARS-CoV-2, depend on their RNA-dependent RNA polymerases (RdRp) for replication, which is error prone. Monitoring replication errors is crucial for understanding the virus's evolution. Current methods lack the precision to detect rare de novo RNA mutations, particularly in low-input samples such as those from patients. Here we introduce a targeted accurate RNA consensus sequencing method (tARC-seq) to accurately determine the mutation frequency and types in SARS-CoV-2, both in cell culture and clinical samples. Our findings show an average of 2.68 × 10 de novo errors per cycle with a C > T bias that cannot be solely attributed to APOBEC editing. We identified hotspots and cold spots throughout the genome, correlating with high or low GC content, and pinpointed transcription regulatory sites as regions more susceptible to errors. tARC-seq captured template switching events including insertions, deletions and complex mutations. These insights shed light on the genetic diversity generation and evolutionary dynamics of SARS-CoV-2.

摘要

RNA 病毒(如 SARS-CoV-2)依赖其 RNA 依赖性 RNA 聚合酶(RdRp)进行复制,而这种复制过程容易出错。监测复制错误对于理解病毒的进化至关重要。目前的方法缺乏检测稀有从头 RNA 突变的精度,特别是在输入量低的样本(如来自患者的样本)中。在这里,我们引入了一种靶向准确 RNA 共识测序方法(tARC-seq),以准确确定 SARS-CoV-2 在细胞培养和临床样本中的突变频率和类型。我们的研究结果表明,每个循环平均会产生 2.68×10 个新的错误,其中 C>T 偏向不能仅归因于 APOBEC 编辑。我们在整个基因组中发现了热点和冷点,与高或低 GC 含量相关,并确定转录调节位点为更容易出错的区域。tARC-seq 捕获了包括插入、缺失和复杂突变在内的模板转换事件。这些发现揭示了 SARS-CoV-2 的遗传多样性产生和进化动态的一些机制。

相似文献

1
Targeted accurate RNA consensus sequencing (tARC-seq) reveals mechanisms of replication error affecting SARS-CoV-2 divergence.
Nat Microbiol. 2024 May;9(5):1382-1392. doi: 10.1038/s41564-024-01655-4. Epub 2024 Apr 22.
2
RNA polymerase inaccuracy underlies SARS-CoV-2 variants and vaccine heterogeneity.
Res Sq. 2022 Jun 2:rs.3.rs-1690086. doi: 10.21203/rs.3.rs-1690086/v1.
4
Host-Virus Chimeric Events in SARS-CoV-2-Infected Cells Are Infrequent and Artifactual.
J Virol. 2021 Jul 12;95(15):e0029421. doi: 10.1128/JVI.00294-21.
6
Different selection dynamics of S and RdRp between SARS-CoV-2 genomes with and without the dominant mutations.
Infect Genet Evol. 2021 Jul;91:104796. doi: 10.1016/j.meegid.2021.104796. Epub 2021 Mar 3.
7
Patterns of within-host genetic diversity in SARS-CoV-2.
Elife. 2021 Aug 13;10:e66857. doi: 10.7554/eLife.66857.
9
Comparison of genome replication fidelity between SARS-CoV-2 and influenza A virus in cell culture.
Sci Rep. 2023 Aug 11;13(1):13105. doi: 10.1038/s41598-023-40463-4.
10
Mutation Rates and Selection on Synonymous Mutations in SARS-CoV-2.
Genome Biol Evol. 2021 May 7;13(5). doi: 10.1093/gbe/evab087.

引用本文的文献

1
The mutational landscape of SARS-CoV-2 provides new insight into viral evolution and fitness.
Nat Commun. 2025 Jul 11;16(1):6425. doi: 10.1038/s41467-025-61555-x.
2
Biomolecular condensates control and are defined by RNA-RNA interactions that arise in viral replication.
Res Sq. 2025 May 13:rs.3.rs-6378534. doi: 10.21203/rs.3.rs-6378534/v1.
3
SARS-CoV-2 resistance analyses from the Phase 3 PINETREE study of remdesivir treatment in nonhospitalized participants.
Antimicrob Agents Chemother. 2025 Feb 13;69(2):e0123824. doi: 10.1128/aac.01238-24. Epub 2024 Dec 19.
4
Refining SARS-CoV-2 intra-host variation by leveraging large-scale sequencing data.
NAR Genom Bioinform. 2024 Nov 12;6(4):lqae145. doi: 10.1093/nargab/lqae145. eCollection 2024 Sep.
5
No evidence that mutations in SARS-CoV-2 variants of concern derive from homologous fragments in gut microbiota.
J Virol. 2024 Dec 17;98(12):e0146824. doi: 10.1128/jvi.01468-24. Epub 2024 Nov 4.
6
C→U transition biases in SARS-CoV-2: still rampant 4 years from the start of the COVID-19 pandemic.
mBio. 2024 Dec 11;15(12):e0249324. doi: 10.1128/mbio.02493-24. Epub 2024 Oct 30.
8
APOBEC3-related mutations in the spike protein-encoding region facilitate SARS-CoV-2 evolution.
Heliyon. 2024 May 29;10(11):e32139. doi: 10.1016/j.heliyon.2024.e32139. eCollection 2024 Jun 15.

本文引用的文献

1
2
Evolutionary conservation of the fidelity of transcription.
Nat Commun. 2023 Mar 20;14(1):1547. doi: 10.1038/s41467-023-36525-w.
3
Cellular APOBEC3A deaminase drives mutations in the SARS-CoV-2 genome.
Nucleic Acids Res. 2023 Jan 25;51(2):783-795. doi: 10.1093/nar/gkac1238.
4
The roles of APOBEC-mediated RNA editing in SARS-CoV-2 mutations, replication and fitness.
Sci Rep. 2022 Sep 13;12(1):14972. doi: 10.1038/s41598-022-19067-x.
6
Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN.
Proc Natl Acad Sci U S A. 2022 Mar 1;119(9). doi: 10.1073/pnas.2106379119.
10
Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2.
Cell Host Microbe. 2021 Dec 8;29(12):1788-1801.e6. doi: 10.1016/j.chom.2021.11.005. Epub 2021 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验