Suppr超能文献

相似文献

1
Targeted accurate RNA consensus sequencing (tARC-seq) reveals mechanisms of replication error affecting SARS-CoV-2 divergence.
Nat Microbiol. 2024 May;9(5):1382-1392. doi: 10.1038/s41564-024-01655-4. Epub 2024 Apr 22.
2
RNA polymerase inaccuracy underlies SARS-CoV-2 variants and vaccine heterogeneity.
Res Sq. 2022 Jun 2:rs.3.rs-1690086. doi: 10.21203/rs.3.rs-1690086/v1.
4
Host-Virus Chimeric Events in SARS-CoV-2-Infected Cells Are Infrequent and Artifactual.
J Virol. 2021 Jul 12;95(15):e0029421. doi: 10.1128/JVI.00294-21.
6
Different selection dynamics of S and RdRp between SARS-CoV-2 genomes with and without the dominant mutations.
Infect Genet Evol. 2021 Jul;91:104796. doi: 10.1016/j.meegid.2021.104796. Epub 2021 Mar 3.
7
Patterns of within-host genetic diversity in SARS-CoV-2.
Elife. 2021 Aug 13;10:e66857. doi: 10.7554/eLife.66857.
9
Comparison of genome replication fidelity between SARS-CoV-2 and influenza A virus in cell culture.
Sci Rep. 2023 Aug 11;13(1):13105. doi: 10.1038/s41598-023-40463-4.
10
Mutation Rates and Selection on Synonymous Mutations in SARS-CoV-2.
Genome Biol Evol. 2021 May 7;13(5). doi: 10.1093/gbe/evab087.

引用本文的文献

1
The mutational landscape of SARS-CoV-2 provides new insight into viral evolution and fitness.
Nat Commun. 2025 Jul 11;16(1):6425. doi: 10.1038/s41467-025-61555-x.
2
Biomolecular condensates control and are defined by RNA-RNA interactions that arise in viral replication.
Res Sq. 2025 May 13:rs.3.rs-6378534. doi: 10.21203/rs.3.rs-6378534/v1.
3
SARS-CoV-2 resistance analyses from the Phase 3 PINETREE study of remdesivir treatment in nonhospitalized participants.
Antimicrob Agents Chemother. 2025 Feb 13;69(2):e0123824. doi: 10.1128/aac.01238-24. Epub 2024 Dec 19.
4
Refining SARS-CoV-2 intra-host variation by leveraging large-scale sequencing data.
NAR Genom Bioinform. 2024 Nov 12;6(4):lqae145. doi: 10.1093/nargab/lqae145. eCollection 2024 Sep.
5
No evidence that mutations in SARS-CoV-2 variants of concern derive from homologous fragments in gut microbiota.
J Virol. 2024 Dec 17;98(12):e0146824. doi: 10.1128/jvi.01468-24. Epub 2024 Nov 4.
6
C→U transition biases in SARS-CoV-2: still rampant 4 years from the start of the COVID-19 pandemic.
mBio. 2024 Dec 11;15(12):e0249324. doi: 10.1128/mbio.02493-24. Epub 2024 Oct 30.
8
APOBEC3-related mutations in the spike protein-encoding region facilitate SARS-CoV-2 evolution.
Heliyon. 2024 May 29;10(11):e32139. doi: 10.1016/j.heliyon.2024.e32139. eCollection 2024 Jun 15.

本文引用的文献

1
2
Evolutionary conservation of the fidelity of transcription.
Nat Commun. 2023 Mar 20;14(1):1547. doi: 10.1038/s41467-023-36525-w.
3
Cellular APOBEC3A deaminase drives mutations in the SARS-CoV-2 genome.
Nucleic Acids Res. 2023 Jan 25;51(2):783-795. doi: 10.1093/nar/gkac1238.
4
The roles of APOBEC-mediated RNA editing in SARS-CoV-2 mutations, replication and fitness.
Sci Rep. 2022 Sep 13;12(1):14972. doi: 10.1038/s41598-022-19067-x.
6
Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN.
Proc Natl Acad Sci U S A. 2022 Mar 1;119(9). doi: 10.1073/pnas.2106379119.
10
Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2.
Cell Host Microbe. 2021 Dec 8;29(12):1788-1801.e6. doi: 10.1016/j.chom.2021.11.005. Epub 2021 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验