Faculty of Science and Engineering, School of Computer Science, University of Nottingham Malaysia, Semenyih, Malaysia.
Med Biol Eng Comput. 2024 Aug;62(8):2571-2583. doi: 10.1007/s11517-024-03093-0. Epub 2024 Apr 23.
Diabetic retinopathy disease contains lesions (e.g., exudates, hemorrhages, and microaneurysms) that are minute to the naked eye. Determining the lesions at pixel level poses a challenge as each pixel does not reflect any semantic entities. Furthermore, the computational cost of inspecting each pixel is expensive because the number of pixels is high even at low resolution. In this work, we propose a hybrid image processing method. Simple Linear Iterative Clustering with Gaussian Filter (SLIC-G) for the purpose of overcoming pixel constraints. The SLIC-G image processing method is divided into two stages: (1) simple linear iterative clustering superpixel segmentation and (2) Gaussian smoothing operation. In such a way, a large number of new transformed datasets are generated and then used for model training. Finally, two performance evaluation metrics that are suitable for imbalanced diabetic retinopathy datasets were used to validate the effectiveness of the proposed SLIC-G. The results indicate that, in comparison to prior published works' results, the proposed SLIC-G shows better performance on image classification of class imbalanced diabetic retinopathy datasets. This research reveals the importance of image processing and how it influences the performance of deep learning networks. The proposed SLIC-G enhances pre-trained network performance by eliminating the local redundancy of an image, which preserves local structures, but avoids over-segmented, noisy clips. It closes the research gap by introducing the use of superpixel segmentation and Gaussian smoothing operation as image processing methods in diabetic retinopathy-related tasks.
糖尿病性视网膜病变包含病变(例如渗出物、出血和微动脉瘤),这些病变用肉眼无法观察到。在像素级别确定病变具有挑战性,因为每个像素都不反映任何语义实体。此外,由于即使在低分辨率下像素数量也很高,因此检查每个像素的计算成本很高。在这项工作中,我们提出了一种混合图像处理方法。使用带高斯滤波器的简单线性迭代聚类(SLIC-G)来克服像素限制。SLIC-G 图像处理方法分为两个阶段:(1)简单线性迭代聚类超像素分割和(2)高斯平滑操作。通过这种方式,生成了大量新的转换数据集,然后用于模型训练。最后,使用两种适合不平衡糖尿病视网膜病变数据集的性能评估指标来验证所提出的 SLIC-G 的有效性。结果表明,与之前发表的工作的结果相比,所提出的 SLIC-G 在不平衡糖尿病视网膜病变数据集的图像分类方面表现出更好的性能。这项研究揭示了图像处理的重要性以及它如何影响深度学习网络的性能。所提出的 SLIC-G 通过消除图像的局部冗余来增强预训练网络的性能,保留了局部结构,但避免了过度分割的、嘈杂的片段。它通过引入超像素分割和高斯平滑操作作为糖尿病视网膜病变相关任务中的图像处理方法来填补研究空白。