Suppr超能文献

利用纹理特征自动检测胸部 X 光图像中的肺炎。

Automatic detection of pneumonia in chest X-ray images using textural features.

机构信息

Department of Computer Architecture and Technology, Universidad Politécnica de Madrid, 28660, Boadilla del Monte, Spain.

Department of Computer Architecture and Technology, Universidad Politécnica de Madrid, 28660, Boadilla del Monte, Spain; Center for Biomedical Technology, Campus de Montegancedo, Universidad Politécnica de Madrid, 28233, Pozuelo de Alarcón, Spain.

出版信息

Comput Biol Med. 2022 Jun;145:105466. doi: 10.1016/j.compbiomed.2022.105466. Epub 2022 Mar 30.

Abstract

Fast and accurate diagnosis is critical for the triage and management of pneumonia, particularly in the current scenario of a COVID-19 pandemic, where this pathology is a major symptom of the infection. With the objective of providing tools for that purpose, this study assesses the potential of three textural image characterisation methods: radiomics, fractal dimension and the recently developed superpixel-based histon, as biomarkers to be used for training Artificial Intelligence (AI) models in order to detect pneumonia in chest X-ray images. Models generated from three different AI algorithms have been studied: K-Nearest Neighbors, Support Vector Machine and Random Forest. Two open-access image datasets were used in this study. In the first one, a dataset composed of paediatric chest X-ray, the best performing generated models achieved an 83.3% accuracy with 89% sensitivity for radiomics, 89.9% accuracy with 93.6% sensitivity for fractal dimension and 91.3% accuracy with 90.5% sensitivity for superpixels based histon. Second, a dataset derived from an image repository developed primarily as a tool for studying COVID-19 was used. For this dataset, the best performing generated models resulted in a 95.3% accuracy with 99.2% sensitivity for radiomics, 99% accuracy with 100% sensitivity for fractal dimension and 99% accuracy with 98.6% sensitivity for superpixel-based histons. The results confirm the validity of the tested methods as reliable and easy-to-implement automatic diagnostic tools for pneumonia.

摘要

快速准确的诊断对于肺炎的分诊和管理至关重要,特别是在当前 COVID-19 大流行的情况下,这种病理学是感染的主要症状。本研究旨在为此目的提供工具,评估了三种纹理图像特征描述方法的潜力:放射组学、分形维数和最近开发的基于超像素的Histogram,作为用于训练人工智能 (AI) 模型的生物标志物,以检测胸部 X 射线图像中的肺炎。研究了三种不同的 AI 算法生成的模型:K-最近邻、支持向量机和随机森林。本研究使用了两个开放获取的图像数据集。在第一个数据集,由儿科胸部 X 射线组成的数据集,表现最佳的生成模型在放射组学方面的准确率为 83.3%,敏感度为 89%,分形维数的准确率为 89.9%,敏感度为 93.6%,基于超像素的Histogram 的准确率为 91.3%,敏感度为 90.5%。其次,使用了一个主要作为研究 COVID-19 工具的图像库开发的数据集。对于这个数据集,表现最佳的生成模型在放射组学方面的准确率为 95.3%,敏感度为 99.2%,分形维数的准确率为 99%,敏感度为 100%,基于超像素的Histogram 的准确率为 99%,敏感度为 98.6%。结果证实了所测试方法的有效性,它们是可靠且易于实施的肺炎自动诊断工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验