Department of Computer Architecture and Technology, Universidad Politécnica de Madrid, 28660, Boadilla del Monte, Spain.
Department of Computer Architecture and Technology, Universidad Politécnica de Madrid, 28660, Boadilla del Monte, Spain; Center for Biomedical Technology, Campus de Montegancedo, Universidad Politécnica de Madrid, 28233, Pozuelo de Alarcón, Spain.
Comput Biol Med. 2022 Jun;145:105466. doi: 10.1016/j.compbiomed.2022.105466. Epub 2022 Mar 30.
Fast and accurate diagnosis is critical for the triage and management of pneumonia, particularly in the current scenario of a COVID-19 pandemic, where this pathology is a major symptom of the infection. With the objective of providing tools for that purpose, this study assesses the potential of three textural image characterisation methods: radiomics, fractal dimension and the recently developed superpixel-based histon, as biomarkers to be used for training Artificial Intelligence (AI) models in order to detect pneumonia in chest X-ray images. Models generated from three different AI algorithms have been studied: K-Nearest Neighbors, Support Vector Machine and Random Forest. Two open-access image datasets were used in this study. In the first one, a dataset composed of paediatric chest X-ray, the best performing generated models achieved an 83.3% accuracy with 89% sensitivity for radiomics, 89.9% accuracy with 93.6% sensitivity for fractal dimension and 91.3% accuracy with 90.5% sensitivity for superpixels based histon. Second, a dataset derived from an image repository developed primarily as a tool for studying COVID-19 was used. For this dataset, the best performing generated models resulted in a 95.3% accuracy with 99.2% sensitivity for radiomics, 99% accuracy with 100% sensitivity for fractal dimension and 99% accuracy with 98.6% sensitivity for superpixel-based histons. The results confirm the validity of the tested methods as reliable and easy-to-implement automatic diagnostic tools for pneumonia.
快速准确的诊断对于肺炎的分诊和管理至关重要,特别是在当前 COVID-19 大流行的情况下,这种病理学是感染的主要症状。本研究旨在为此目的提供工具,评估了三种纹理图像特征描述方法的潜力:放射组学、分形维数和最近开发的基于超像素的Histogram,作为用于训练人工智能 (AI) 模型的生物标志物,以检测胸部 X 射线图像中的肺炎。研究了三种不同的 AI 算法生成的模型:K-最近邻、支持向量机和随机森林。本研究使用了两个开放获取的图像数据集。在第一个数据集,由儿科胸部 X 射线组成的数据集,表现最佳的生成模型在放射组学方面的准确率为 83.3%,敏感度为 89%,分形维数的准确率为 89.9%,敏感度为 93.6%,基于超像素的Histogram 的准确率为 91.3%,敏感度为 90.5%。其次,使用了一个主要作为研究 COVID-19 工具的图像库开发的数据集。对于这个数据集,表现最佳的生成模型在放射组学方面的准确率为 95.3%,敏感度为 99.2%,分形维数的准确率为 99%,敏感度为 100%,基于超像素的Histogram 的准确率为 99%,敏感度为 98.6%。结果证实了所测试方法的有效性,它们是可靠且易于实施的肺炎自动诊断工具。