Suppr超能文献

两种酰基转移酶对种子油中亚麻酸水平的贡献不同。

Two Acyltransferases Contribute Differently to Linolenic Acid Levels in Seed Oil.

作者信息

Marmon Sofia, Sturtevant Drew, Herrfurth Cornelia, Chapman Kent, Stymne Sten, Feussner Ivo

机构信息

Albrecht-von-Haller Institute for Plant Sciences (S.M., C.H., I.F.) and Göttingen Center for Molecular Biosciences (I.F.), Department of Plant Biochemistry, Georg-August-University, 37077 Goettingen, Germany;

Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden (S.M., S.S.); and

出版信息

Plant Physiol. 2017 Apr;173(4):2081-2095. doi: 10.1104/pp.16.01865. Epub 2017 Feb 24.

Abstract

Acyltransferases are key contributors to triacylglycerol (TAG) synthesis and, thus, are of great importance for seed oil quality. The effects of increased or decreased expression of () or () on seed lipid composition were assessed in several lines. Furthermore, in vitro assays of acyltransferases in microsomal fractions prepared from developing seeds of some of these lines were performed. Decreased expression of led to an increased percentage of 18:3-3 without any change in total lipid content of the seed. The tri-18:3 TAG increase occurred predominantly in the cotyledon, as determined with matrix-assisted laser desorption/ionization-mass spectrometry, whereas species with two 18:3-3 acyl groups were elevated in both cotyledon and embryonal axis. overexpression led to a relative increase of 18:2-6 at the expense of 18:3-3, also without affecting the total lipid content. Differential distributions of TAG species also were observed in different parts of the seed. The microsomal assays revealed that seeds have very high activity of diacylglycerol-phosphatidylcholine interconversion. The combination of analytical and biochemical data suggests that the higher 18:2-6 content in the seed oil of the overexpressors is due to the channeling of fatty acids from phosphatidylcholine into TAG before being desaturated to 18:3-3, caused by the high activity of PDAT in general and by PDAT specificity for 18:2-6. The higher levels of 18:3-3 in -silencing lines are likely due to the compensatory activity of a TAG-synthesizing enzyme with specificity for this acyl group and more desaturation of acyl groups occurring on phosphatidylcholine.

摘要

酰基转移酶是三酰甘油(TAG)合成的关键贡献者,因此对种子油品质非常重要。在多个品系中评估了()或()表达增加或减少对种子脂质组成的影响。此外,还对其中一些品系发育种子制备的微粒体组分中的酰基转移酶进行了体外测定。()表达降低导致18:3 - 3的百分比增加,而种子总脂质含量没有任何变化。通过基质辅助激光解吸/电离质谱法测定,三18:3 TAG的增加主要发生在子叶中,而具有两个18:3 - 3酰基的物种在子叶和胚轴中均升高。()过表达导致18:2 - 6相对增加,以18:3 - 3为代价,同样不影响总脂质含量。在种子的不同部位也观察到TAG物种的差异分布。微粒体测定表明,()种子具有非常高的二酰甘油 - 磷脂酰胆碱相互转化活性。分析和生化数据的结合表明,()过表达体种子油中较高的18:2 - 6含量是由于脂肪酸从磷脂酰胆碱进入TAG,然后再去饱和为18:3 - 3,这是由一般的PDAT高活性以及PDAT对18:2 - 6的特异性引起的。()沉默品系中较高水平的18:3 - 3可能是由于对该酰基具有特异性的TAG合成酶的补偿活性以及磷脂酰胆碱上发生的酰基更多去饱和作用。

相似文献

1
Two Acyltransferases Contribute Differently to Linolenic Acid Levels in Seed Oil.
Plant Physiol. 2017 Apr;173(4):2081-2095. doi: 10.1104/pp.16.01865. Epub 2017 Feb 24.
2
Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil.
Plant Biotechnol J. 2018 Apr;16(4):926-938. doi: 10.1111/pbi.12839. Epub 2018 Jan 18.
4
A Specialized Diacylglycerol Acyltransferase Contributes to the Extreme Medium-Chain Fatty Acid Content of Seed Oil.
Plant Physiol. 2017 May;174(1):97-109. doi: 10.1104/pp.16.01894. Epub 2017 Mar 21.
5
DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants.
Lipids. 2010 Feb;45(2):145-57. doi: 10.1007/s11745-010-3385-4. Epub 2010 Jan 27.
10
Oil-Producing Metabolons Containing DGAT1 Use Separate Substrate Pools from those Containing DGAT2 or PDAT.
Plant Physiol. 2020 Oct;184(2):720-737. doi: 10.1104/pp.20.00461. Epub 2020 Jul 30.

引用本文的文献

3
Born of frustration: the emergence of Camelina sativa as a platform for lipid biotechnology.
Plant Physiol. 2025 Feb 7;197(2). doi: 10.1093/plphys/kiaf009.
6
Functional Characterization of the Effects of CsDGAT1 and CsDGAT2 on Fatty Acid Composition in .
Int J Mol Sci. 2024 Jun 25;25(13):6944. doi: 10.3390/ijms25136944.
9
Integrative Metabolomic and Transcriptomic Landscape during Fruit Ripening and Cracking.
Int J Mol Sci. 2023 Nov 24;24(23):16732. doi: 10.3390/ijms242316732.
10

本文引用的文献

1
Three-dimensional visualization of membrane phospholipid distributions in Arabidopsis thaliana seeds: A spatial perspective of molecular heterogeneity.
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Feb;1862(2):268-281. doi: 10.1016/j.bbalip.2016.11.012. Epub 2016 Dec 3.
3
Two Predicted Transmembrane Domains Exclude Very Long Chain Fatty acyl-CoAs from the Active Site of Mouse Wax Synthase.
PLoS One. 2015 Dec 29;10(12):e0145797. doi: 10.1371/journal.pone.0145797. eCollection 2015.
4
Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ.
Curr Opin Biotechnol. 2016 Feb;37:53-60. doi: 10.1016/j.copbio.2015.10.004. Epub 2015 Nov 22.
6
Lipid analysis of developing Camelina sativa seeds and cultured embryos.
Phytochemistry. 2015 Oct;118:23-32. doi: 10.1016/j.phytochem.2015.07.022. Epub 2015 Aug 8.
7
Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa.
PLoS One. 2015 Jun 29;10(6):e0131755. doi: 10.1371/journal.pone.0131755. eCollection 2015.
8
Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids.
Biochimie. 2016 Jan;120:9-16. doi: 10.1016/j.biochi.2015.06.009. Epub 2015 Jun 21.
10
Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.
Plant Biotechnol J. 2016 Jan;14(1):252-9. doi: 10.1111/pbi.12379. Epub 2015 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验