Hassouneh Aya, Bazuin Bradley, Danna-Dos-Santos Alessander, Acar Ilgin, Abdel-Qader Ikhlas
Electrical and Computer Engineering, Western Michigan University, Kalamazoo, MI, USA.
Department of Physical Therapy, Western Michigan University, Kalamazoo, MI, USA.
Digit Biomark. 2024 Apr 22;8(1):59-74. doi: 10.1159/000538486. eCollection 2024 Jan-Dec.
Alzheimer's disease (AD) is a progressive neurological disorder characterized by mild memory loss and ranks as a leading cause of mortality in the USA, accounting for approximately 120,000 deaths per year. It is also the primary form of dementia. Early detection is critical for timely intervention as the neurodegenerative process often starts 15-20 years before cognitive symptoms manifest. This study focuses on determining feature importance in AD classification using fused texture features from 3D magnetic resonance imaging hippocampal and entorhinal cortex and standardized uptake value ratio (SUVR) derived from positron emission tomography (PET) images.
To achieve this objective, we employed four distinct classifiers (Linear Support Vector Classification, Linear Discriminant Analysis, Logistic Regression, and Logistic Regression Classifier with Stochastic Gradient Descent Learning). These classifiers were used to derive both average and top-ranked importance scores for each feature based on their outputs. Our framework is designed to distinguish between two classes, AD-negative (or mild cognitive impairment stable [MCIs]) and AD-positive (or MCI conversion [MCIc]), using a probabilistic neural network classifier and the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.
The findings from the feature importance highlight the crucial role of the GLCM texture features extracted from the hippocampus and entorhinal cortex, demonstrating their superior performance compared to the volume and SUVR. GLCM texture AD classification achieved approximately 90% sensitivity in identifying MCIc cases while maintaining low false positives (below 30%) when fused with other features. Moreover, the receiver operating characteristic curves validate the GLCMs' superior performance in distinguishing between MCIs and MCIc. Additionally, fusing different types of features improved classification performance compared to relying solely on any single feature category.
Our study emphasizes the pivotal role of GLCM texture features in early Alzheimer's detection.
阿尔茨海默病(AD)是一种进行性神经退行性疾病,其特征为轻度记忆丧失,在美国是主要死因之一,每年导致约12万例死亡。它也是痴呆症的主要形式。由于神经退行性过程通常在认知症状出现前15至20年就已开始,早期检测对于及时干预至关重要。本研究聚焦于使用来自三维磁共振成像海马体和内嗅皮质的融合纹理特征以及源自正电子发射断层扫描(PET)图像的标准化摄取值比率(SUVR)来确定AD分类中的特征重要性。
为实现这一目标,我们采用了四种不同的分类器(线性支持向量分类、线性判别分析、逻辑回归以及带有随机梯度下降学习的逻辑回归分类器)。这些分类器基于其输出为每个特征得出平均重要性得分和排名靠前的重要性得分。我们的框架旨在使用概率神经网络分类器和阿尔茨海默病神经成像倡议(ADNI)数据库区分两类,即AD阴性(或轻度认知障碍稳定[MCIs])和AD阳性(或MCI转化[MCIc])。
特征重要性的研究结果突出了从海马体和内嗅皮质提取的灰度共生矩阵(GLCM)纹理特征的关键作用,表明其性能优于体积和SUVR。当与其他特征融合时,GLCM纹理AD分类在识别MCIc病例时达到了约90%的灵敏度,同时保持较低的假阳性率(低于30%)。此外,接收器操作特征曲线验证了GLCM在区分MCIs和MCIc方面的卓越性能。此外,与仅依赖任何单一特征类别相比,融合不同类型的特征提高了分类性能。
我们的研究强调了GLCM纹理特征在早期阿尔茨海默病检测中的关键作用。