State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore.
Angew Chem Int Ed Engl. 2024 Jul 1;63(27):e202405937. doi: 10.1002/anie.202405937. Epub 2024 May 29.
Single-atom nanozymes (SAzymes) with atomically dispersed active sites are potential substitutes for natural enzymes. A systematic study of its multiple functions can in-depth understand SAzymes's nature, which remains elusive. Here, we develop a novel ultrafast synthesis of sputtered SAzymes by in situ bombarding-embedding technique. Using this method, sputtered copper (Cu) SAzymes (CuSA) is developed with unreported unique planar Cu-C coordinated configuration. To enhance the tumor-specific targeting, we employ a bioorthogonal approach to engineer CuSA, denoted as CuSACO. CuSACO not only exhibits minimal off-target toxicity but also possesses exceptional ultrahigh catalase-, oxidase-, peroxidase-like multienzyme activities, resulting in reactive oxygen species (ROS) storm generation for effective tumor destruction. Surprisingly, CuSACO can release Cu ions in the presence of glutathione (GSH) to induce cuproptosis, enhancing the tumor treatment efficacy. Notably, CuSACO's remarkable photothermal properties enables precise photothermal therapy (PTT) on tumors. This, combined with nanozyme catalytic activities, cuproptosis and immunotherapy, efficiently inhibiting the growth of orthotopic breast tumors and gliomas, and lung metastasis. Our research highlights the potential of CuSACO as an innovative strategy to utilize multiple mechanism to enhance tumor therapeutic efficacy, broadening the exploration and development of enzyme-like behavior and physiological mechanism of action of SAzymes.
单原子纳米酶(SAzymes)具有原子分散的活性位点,是天然酶的潜在替代品。对其多种功能进行系统研究可以深入了解 SAzymes 的本质,而这一点仍然难以捉摸。在这里,我们开发了一种通过原位轰击嵌入技术制备溅射 SAzymes 的新型超快合成方法。使用这种方法,开发了具有未报道的独特平面 Cu-C 配位构型的溅射铜(Cu)SAzymes(CuSA)。为了增强肿瘤特异性靶向,我们采用生物正交方法对 CuSA 进行工程化,标记为 CuSACO。CuSACO 不仅表现出最小的脱靶毒性,而且具有异常的超高过氧化氢酶、氧化酶、过氧化物酶样多酶活性,导致活性氧(ROS)爆发,从而有效破坏肿瘤。令人惊讶的是,CuSACO 可以在谷胱甘肽 (GSH) 的存在下释放 Cu 离子,从而诱导铜死亡,增强肿瘤治疗效果。值得注意的是,CuSACO 出色的光热特性使其能够对肿瘤进行精确的光热治疗(PTT)。这与纳米酶催化活性、铜死亡和免疫治疗相结合,有效地抑制了原位乳腺癌和神经胶质瘤以及肺转移的生长。我们的研究强调了 CuSACO 作为一种利用多种机制增强肿瘤治疗效果的创新策略的潜力,拓宽了对 SAzymes 的酶样行为和生理作用机制的探索和开发。
ACS Appl Mater Interfaces. 2023-8-16
Mater Today Bio. 2025-7-29
Fundam Res. 2024-12-3
Nat Commun. 2025-7-12
Nanomedicine (Lond). 2025-6-18
Signal Transduct Target Ther. 2025-5-9
Int J Nanomedicine. 2025-5-1