文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基因工程改造的T细胞膜伪装纳米颗粒引发铜死亡以协同进行膀胱癌光热免疫治疗。

Genetically engineered T cell membrane-camouflaged nanoparticles triggered cuproptosis for synergistic bladder cancer photothermal-immunotherapy.

作者信息

Deng Wen, Chen Yuan, Bai Yongke, Shang Haojie, Wu Jian, Zhong Zichen, Ba Xiaozhuo, Tong Yonghua, He Yu, Jiang Kehua, Tang Kun

机构信息

Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

出版信息

J Nanobiotechnology. 2025 Jun 7;23(1):425. doi: 10.1186/s12951-025-03511-x.


DOI:10.1186/s12951-025-03511-x
PMID:40481464
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12144687/
Abstract

Immunotherapy has become a promising and transformative approach for treating advanced or treatment-resistant bladder cancer (BCa). However, its efficacy remains limited due to the immunosuppressive tumor microenvironment (TME) and insufficient immune cell infiltration. Photothermal therapy (PTT), which could cause immunogenic cell death (ICD) in tumor tissue, has been explored as a synergistic approach for bladder cancer immunotherapy. Yet, thermal resistance in cancer cells often undermines the effectiveness of PTT. To address these challenges, we proposed a novel strategy that combines PTT with cuproptosis, a recently identified form of ICD, by engineering Tim-3-overexpressing T cell membrane-coated nanoparticles (Tim3@PHSM@IC) to enhance BCa immunotherapy. The overexpression of Tim-3 on the T cell membrane enabled precise targeting of tumor cells and competitively inhibited the Tim-3 receptor on T cells through recognition of Galectin-9. In vitro, Tim3@PHSM@IC nanoparticles effectively induced photothermal cytotoxicity and robust cuproptosis. In vivo, these nanoparticles significantly inhibited tumor growth in multiple BCa mouse models. Flow cytometry (FCM) and RNA sequencing (RNA-seq) analyses revealed that Tim3@PHSM@IC nanoparticles reprogrammed the TME by activating immune-related genes and enhancing ICD This study highlights the potential of Tim3@PHSM@IC nanoparticles in overcoming the immunosuppressive TME and improving the efficacy of BCa immunotherapy by integrating PTT and cuproptosis.

摘要

免疫疗法已成为治疗晚期或难治性膀胱癌(BCa)的一种有前景且具有变革性的方法。然而,由于免疫抑制性肿瘤微环境(TME)和免疫细胞浸润不足,其疗效仍然有限。光热疗法(PTT)可在肿瘤组织中引发免疫原性细胞死亡(ICD),已被探索作为膀胱癌免疫疗法的一种协同方法。然而,癌细胞中的热抗性常常会削弱PTT的有效性。为应对这些挑战,我们提出了一种新策略,即通过构建过表达Tim-3的T细胞膜包覆纳米颗粒(Tim3@PHSM@IC),将PTT与铜死亡(一种最近发现的ICD形式)相结合,以增强BCa免疫疗法。T细胞膜上Tim-3的过表达能够精准靶向肿瘤细胞,并通过识别半乳糖凝集素-9竞争性抑制T细胞上的Tim-3受体。在体外,Tim3@PHSM@IC纳米颗粒有效诱导光热细胞毒性和强烈的铜死亡。在体内,这些纳米颗粒在多个BCa小鼠模型中显著抑制肿瘤生长。流式细胞术(FCM)和RNA测序(RNA-seq)分析表明,Tim3@PHSM@IC纳米颗粒通过激活免疫相关基因和增强ICD对TME进行了重编程。本研究突出了Tim3@PHSM@IC纳米颗粒在克服免疫抑制性TME以及通过整合PTT和铜死亡提高BCa免疫疗法疗效方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a59/12144687/2844b51e7e1f/12951_2025_3511_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a59/12144687/c98da1a01814/12951_2025_3511_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a59/12144687/3386835199fd/12951_2025_3511_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a59/12144687/2844b51e7e1f/12951_2025_3511_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a59/12144687/c98da1a01814/12951_2025_3511_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a59/12144687/3386835199fd/12951_2025_3511_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a59/12144687/2844b51e7e1f/12951_2025_3511_Fig11_HTML.jpg

相似文献

[1]
Genetically engineered T cell membrane-camouflaged nanoparticles triggered cuproptosis for synergistic bladder cancer photothermal-immunotherapy.

J Nanobiotechnology. 2025-6-7

[2]
Generating Immunological Memory Against Cancer by Camouflaging Gold-Based Photothermal Nanoparticles in NIR-II Biowindow for Mimicking T-Cells.

Small. 2024-12

[3]
Cancer cell membrane-coated nanoparticles for bimodal imaging-guided photothermal therapy and docetaxel-enhanced immunotherapy against cancer.

J Nanobiotechnology. 2021-12-24

[4]
Photothermal MnO nanoparticles boost chemo-photothermal therapy-induced immunogenic cell death in tumor immunotherapy.

Int J Pharm. 2022-4-5

[5]
Photothermal FeO nanoparticles induced immunogenic ferroptosis for synergistic colorectal cancer therapy.

J Nanobiotechnology. 2024-10-16

[6]
Integrating single-cell transcriptomics to reveal the ferroptosis regulators in the tumor microenvironment that contribute to bladder urothelial carcinoma progression and immunotherapy.

Front Immunol. 2024

[7]
Tumor and intratumoral pathogen cascade-targeting photothermal nanotherapeutics for boosted immunotherapy of colorectal cancer.

J Control Release. 2025-3-10

[8]
Quercetin-ferrum nanoparticles enhance photothermal therapy by modulating the tumor immunosuppressive microenvironment.

Acta Biomater. 2022-12

[9]
FeO Nanoparticles That Modulate the Polarisation of Tumor-Associated Macrophages Synergize with Photothermal Therapy and Immunotherapy (PD-1/PD-L1 Inhibitors) to Enhance Anti-Tumor Therapy.

Int J Nanomedicine. 2024

[10]
Genetically engineered cellular nanoparticles loaded with curcuminoids for cancer immunotherapy.

Theranostics. 2024

本文引用的文献

[1]
Current Advances in Viral Nanoparticles for Biomedicine.

ACS Nano. 2024-12-17

[2]
Engineering AIEgens-Tethered Gold Nanoparticles with Enzymatic Dual Self-Assembly for Amplified Cancer-Specific Phototheranostics.

ACS Nano. 2024-10-1

[3]
Multiple Synergistic Effects of the Microglia Membrane-Bionic Nanoplatform on Mediate Tumor Microenvironment Remodeling to Amplify Glioblastoma Immunotherapy.

ACS Nano. 2024-6-4

[4]
Bioorthogonal Cu Single-Atom Nanozyme for Synergistic Nanocatalytic Therapy, Photothermal Therapy, Cuproptosis and Immunotherapy.

Angew Chem Int Ed Engl. 2024-7-1

[5]
Cell membrane coated nanoparticles as a biomimetic drug delivery platform for enhancing cancer immunotherapy.

Nanoscale. 2024-5-9

[6]
The Application of Nanoparticles Targeting Cancer-Associated Fibroblasts.

Int J Nanomedicine. 2024-4-8

[7]
Targeting cuproplasia and cuproptosis in cancer.

Nat Rev Clin Oncol. 2024-5

[8]
The application of nanoparticles-based ferroptosis, pyroptosis and autophagy in cancer immunotherapy.

J Nanobiotechnology. 2024-3-7

[9]
Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity.

Nat Rev Cancer. 2024-5

[10]
Polydopamine Nanostructure-Enhanced Water Interaction with pH-Responsive Manganese Sulfide Nanoclusters for Tumor Magnetic Resonance Contrast Enhancement and Synergistic Ferroptosis-Photothermal Therapy.

ACS Nano. 2024-1-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索