Suppr超能文献

通过聚合物,借助技术实现的、灵活、轻便且集成的可植入神经探针设备。

Through-polymer, via technology-enabled, flexible, lightweight, and integrated devices for implantable neural probes.

作者信息

Zhou Cunkai, Tian Ye, Li Gen, Ye Yifei, Gao Lusha, Li Jiazhi, Liu Ziwei, Su Haoyang, Lu Yunxiao, Li Meng, Zhou Zhitao, Wei Xiaoling, Qin Lunming, Tao Tiger H, Sun Liuyang

机构信息

College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai, China.

2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.

出版信息

Microsyst Nanoeng. 2024 Apr 22;10:54. doi: 10.1038/s41378-024-00691-8. eCollection 2024.

Abstract

In implantable electrophysiological recording systems, the headstage typically comprises neural probes that interface with brain tissue and integrated circuit chips for signal processing. While advancements in MEMS and CMOS technology have significantly improved these components, their interconnection still relies on conventional printed circuit boards and sophisticated adapters. This conventional approach adds considerable weight and volume to the package, especially for high channel count systems. To address this issue, we developed a through-polymer via (TPV) method inspired by the through-silicon via (TSV) technique in advanced three-dimensional packaging. This innovation enables the vertical integration of flexible probes, amplifier chips, and PCBs, realizing a flexible, lightweight, and integrated device (FLID). The total weight of the FLIDis only 25% that of its conventional counterparts relying on adapters, which significantly increased the activity levels of animals wearing the FLIDs to nearly match the levels of control animals without implants. Furthermore, by incorporating a platinum-iridium alloy as the top layer material for electrical contact, the FLID realizes exceptional electrical performance, enabling in vivo measurements of both local field potentials and individual neuron action potentials. These findings showcase the potential of FLIDs in scaling up implantable neural recording systems and mark a significant advancement in the field of neurotechnology.

摘要

在植入式电生理记录系统中,前置放大器通常包括与脑组织接口的神经探针以及用于信号处理的集成电路芯片。虽然微机电系统(MEMS)和互补金属氧化物半导体(CMOS)技术的进步显著改进了这些组件,但其互连仍依赖于传统印刷电路板和复杂的适配器。这种传统方法给封装增加了相当大的重量和体积,特别是对于高通道数系统。为了解决这个问题,我们受先进三维封装中的硅通孔(TSV)技术启发,开发了一种聚合物通孔(TPV)方法。这一创新实现了柔性探针、放大器芯片和印刷电路板的垂直集成,从而实现了一种灵活、轻便且集成的设备(FLID)。FLID的总重量仅为依赖适配器的传统同类设备的25%,这显著提高了佩戴FLID的动物的活动水平,几乎与未植入的对照动物的水平相当。此外,通过将铂铱合金用作电接触的顶层材料,FLID实现了卓越的电气性能,能够在体内测量局部场电位和单个神经元动作电位。这些发现展示了FLID在扩大植入式神经记录系统规模方面的潜力,并标志着神经技术领域的重大进步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b09c/11035623/b741008cd84a/41378_2024_691_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验