Suppr超能文献

用于生存数据的随机森林:哪种方法效果最佳以及在何种条件下?

Random forests for survival data: which methods work best and under what conditions?

作者信息

Berkowitz Matthew, Altman Rachel MacKay, Loughin Thomas M

机构信息

Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada.

出版信息

Int J Biostat. 2024 Apr 24;20(2):315-345. doi: 10.1515/ijb-2023-0056. eCollection 2024 Nov 1.

Abstract

Few systematic comparisons of methods for constructing survival trees and forests exist in the literature. Importantly, when the goal is to predict a survival time or estimate a survival function, the optimal choice of method is unclear. We use an extensive simulation study to systematically investigate various factors that influence survival forest performance - forest construction method, censoring, sample size, distribution of the response, structure of the linear predictor, and presence of correlated or noisy covariates. In particular, we study 11 methods that have recently been proposed in the literature and identify 6 top performers. We find that all the factors that we investigate have significant impact on the methods' relative accuracy of point predictions of survival times and survival function estimates. We use our results to make recommendations for which methods to use in a given context and offer explanations for the observed differences in relative performance.

摘要

文献中很少有关于构建生存树和森林方法的系统比较。重要的是,当目标是预测生存时间或估计生存函数时,方法的最佳选择尚不清楚。我们进行了一项广泛的模拟研究,以系统地调查影响生存森林性能的各种因素——森林构建方法、删失、样本量、响应变量的分布、线性预测器的结构以及相关或有噪声协变量的存在。特别是,我们研究了文献中最近提出的11种方法,并确定了6种表现最佳的方法。我们发现,我们所研究的所有因素对生存时间点预测和生存函数估计的方法相对准确性都有显著影响。我们利用研究结果对在给定背景下应使用哪种方法提出建议,并对观察到的相对性能差异给出解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05b6/11661562/22c1f70d4dbc/j_ijb-2023-0056_fig_001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验