头颈部癌中的MRI影像组学:从可重复性到联合方法

MRI radiomics in head and neck cancer from reproducibility to combined approaches.

作者信息

Corti Anna, Cavalieri Stefano, Calareso Giuseppina, Mattavelli Davide, Ravanelli Marco, Poli Tito, Licitra Lisa, Corino Valentina D A, Mainardi Luca

机构信息

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133, Milan, Italy.

Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy.

出版信息

Sci Rep. 2024 Apr 24;14(1):9451. doi: 10.1038/s41598-024-60009-6.

Abstract

The clinical applicability of radiomics in oncology depends on its transferability to real-world settings. However, the absence of standardized radiomics pipelines combined with methodological variability and insufficient reporting may hamper the reproducibility of radiomic analyses, impeding its translation to clinics. This study aimed to identify and replicate published, reproducible radiomic signatures based on magnetic resonance imaging (MRI), for prognosis of overall survival in head and neck squamous cell carcinoma (HNSCC) patients. Seven signatures were identified and reproduced on 58 HNSCC patients from the DB2Decide Project. The analysis focused on: assessing the signatures' reproducibility and replicating them by addressing the insufficient reporting; evaluating their relationship and performances; and proposing a cluster-based approach to combine radiomic signatures, enhancing the prognostic performance. The analysis revealed key insights: (1) despite the signatures were based on different features, high correlations among signatures and features suggested consistency in the description of lesion properties; (2) although the uncertainties in reproducing the signatures, they exhibited a moderate prognostic capability on an external dataset; (3) clustering approaches improved prognostic performance compared to individual signatures. Thus, transparent methodology not only facilitates replication on external datasets but also advances the field, refining prognostic models for potential personalized medicine applications.

摘要

放射组学在肿瘤学中的临床适用性取决于其向实际临床环境的可转移性。然而,缺乏标准化的放射组学流程,再加上方法学的可变性和报告不足,可能会妨碍放射组学分析的可重复性,从而阻碍其向临床的转化。本研究旨在基于磁共振成像(MRI)识别并复现已发表的、可重复的放射组学特征,用于预测头颈部鳞状细胞癌(HNSCC)患者的总生存期。在来自DB2Decide项目的58例HNSCC患者中识别并复现了7种特征。分析重点在于:评估这些特征的可重复性,并通过解决报告不足的问题来复现它们;评估它们之间的关系和性能;并提出一种基于聚类的方法来组合放射组学特征,以提高预后性能。分析得出了关键见解:(1)尽管这些特征基于不同的特征,但特征之间以及特征内部的高度相关性表明在病变特征描述上具有一致性;(2)尽管在复现这些特征时存在不确定性,但它们在外部数据集上表现出中等的预后能力;(3)与单个特征相比,聚类方法提高了预后性能。因此,透明的方法不仅有助于在外部数据集上进行复现,还能推动该领域发展,完善预后模型以用于潜在的个性化医疗应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea97/11043398/d82b73310412/41598_2024_60009_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索