Suppr超能文献

利用高光谱成像衍生的组织索引图像对头颈部癌症进行皮肤病变分类

Skin Lesion Classification in Head and Neck Cancers Using Tissue Index Images Derived from Hyperspectral Imaging.

作者信息

Hoxha Doruntina, Krt Aljoša, Stergar Jošt, Tomanič Tadej, Grošelj Aleš, Štajduhar Ivan, Serša Gregor, Milanič Matija

机构信息

Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia.

Izola General Hospital, 6310 Izola, Slovenia.

出版信息

Cancers (Basel). 2025 May 11;17(10):1622. doi: 10.3390/cancers17101622.

Abstract

BACKGROUND

Skin lesions associated with head and neck carcinomas present a diagnostic challenge. Conventional imaging methods, such as dermoscopy and RGB imaging, often face limitations in providing detailed information about skin lesions and accurately differentiating tumor tissue from healthy skin.

METHODS

This study developed a novel approach utilizing tissue index images derived from hyperspectral imaging (HSI) in combination with machine learning (ML) classifiers to enhance lesion classification. The primary aim was to identify essential features for categorizing tumor, peritumor, and healthy skin regions using both RGB and hyperspectral data. Detailed skin lesion images of 16 patients, comprising 24 lesions, were acquired using HSI. The first- and second-order statistics radiomic features were extracted from both the tissue index images and RGB images, with the minimum redundancy-maximum relevance (mRMR) algorithm used to select the most relevant ones that played an important role in improving classification accuracy and offering insights into the complexities of skin lesion morphology. We assessed the classification accuracy across three scenarios: using only RGB images (Scenario I), only tissue index images (Scenario II), and their combination (Scenario III).

RESULTS

The results indicated an accuracy of 87.73% for RGB images alone, which improved to 91.75% for tissue index images. The area under the curve (AUC) for lesion classifications reached 0.85 with RGB images and over 0.94 with tissue index images.

CONCLUSIONS

These findings underscore the potential of utilizing HSI-derived tissue index images as a method for the non-invasive characterization of tissues and tumor analysis.

摘要

背景

与头颈部癌相关的皮肤病变带来了诊断挑战。传统成像方法,如皮肤镜检查和RGB成像,在提供有关皮肤病变的详细信息以及准确区分肿瘤组织与健康皮肤方面常常面临局限性。

方法

本研究开发了一种新方法,利用从高光谱成像(HSI)获得的组织索引图像结合机器学习(ML)分类器来增强病变分类。主要目的是使用RGB和高光谱数据识别用于对肿瘤、肿瘤周围和健康皮肤区域进行分类的关键特征。使用HSI获取了16例患者的24个病变的详细皮肤病变图像。从组织索引图像和RGB图像中提取一阶和二阶统计放射组学特征,使用最小冗余-最大相关性(mRMR)算法选择在提高分类准确性和深入了解皮肤病变形态复杂性方面起重要作用的最相关特征。我们评估了三种情况下的分类准确性:仅使用RGB图像(情况I)、仅使用组织索引图像(情况II)以及它们的组合(情况III)。

结果

结果表明,仅RGB图像的准确率为87.73%,组织索引图像的准确率提高到91.75%。病变分类的曲线下面积(AUC)在RGB图像时达到0.85,在组织索引图像时超过0.94。

结论

这些发现强调了利用HSI衍生的组织索引图像作为一种用于组织无创表征和肿瘤分析方法的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e96/12110384/a36fe25e6418/cancers-17-01622-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验