Department of Sensing, Information and Mechanization Engineering, Institute of Agricultural Engineering, Volcani Institute (ARO), Rishon LeZion, 5025001, Israel.
Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 8410501, Israel.
Biosens Bioelectron. 2024 Aug 1;257:116314. doi: 10.1016/j.bios.2024.116314. Epub 2024 Apr 20.
Diarrheagenic E. coli infections, commonly treated with β-lactam antibiotics, contribute to antibiotic resistance - a pressing public health concern. Rapid monitoring of pathogen antibiotic resistance is vital to combat antimicrobial spread. Current bacterial diagnosis methods identify pathogens or determine antibiotic resistance separately, necessitating multiple assays. There is an urgent need for tools that simultaneously identify infectious agents and their antibiotic resistance at the point of care (POC). We developed an integrated electrochemical chip-based biosensor for detecting enteropathogenic E. coli (EPEC), a major neonatal diarrheal pathogen, using an antibody against a virulence marker, termed EspB, and the β-lactam resistance marker, β-lactamase. A dual-channel microfabricated chip, bio-functionalized with a specific EspB monoclonal antibody, and nitrocefin, a β -lactamase substrate was utilized. The chip facilitated electrochemical impedance spectroscopy (EIS)-based detection of EspB antigen and EspB-expressing bacteria. For β-lactam resistance profiling, a second channel enabled differential-pulse voltammetric (DPV) measurement of hydrolyzed nitrocefin. EIS-based detection of EspB antigen was calibrated (LOD: 4.3 ng/mL ±1 and LOQ: 13.0 ng/mL ±3) as well as DPV-based detection of the antibiotic resistance marker, β-lactamase (LOD: 3.6 ng/mL ±1.65 and LOQ: 10 ng/mL ±4). The integrated EIS and DPV biosensor was employed for the simultaneous detection of EspB-expressing and β-lactamase-producing bacteria. The combined readout from both channels allowed the distinction between antibiotic-resistant and -sensitive pathogenic bacteria. The integrated electrochemical biosensor successfully achieved simultaneous, rapid detection of double positive EspB- and β-lactamase-expressing bacteria. Such distinction enabled by a portable device within a short assay time and a simplified sample preparation, may be highly valuable in mitigating the spread of AMR. This new diagnostic tool holds promise for the development of POC devices in clinical diagnosis.
肠致病性大肠杆菌感染通常用β-内酰胺类抗生素治疗,但会导致抗生素耐药性——这是一个紧迫的公共卫生问题。快速监测病原体的抗生素耐药性对于对抗抗菌药物的传播至关重要。目前的细菌诊断方法分别鉴定病原体或确定抗生素耐药性,需要进行多次检测。因此迫切需要能够在即时护理点 (POC) 同时识别感染因子及其抗生素耐药性的工具。我们开发了一种基于集成电化学芯片的生物传感器,用于检测肠致病性大肠杆菌 (EPEC),这是一种主要的新生儿腹泻病原体,使用针对一种称为 EspB 的毒力标志物的抗体,以及β-内酰胺类抗生素耐药标志物β-内酰胺酶。使用生物功能化的双通道微加工芯片,该芯片特异性地结合 EspB 单克隆抗体和β-内酰胺酶底物硝基头孢菌素。该芯片促进了基于电化学阻抗谱 (EIS) 的 EspB 抗原和表达 EspB 的细菌的检测。对于β-内酰胺类抗生素耐药性分析,第二个通道可以进行水解硝基头孢菌素的差分脉冲伏安法 (DPV) 测量。基于 EIS 的 EspB 抗原检测进行了校准 (LOD:4.3ng/mL ±1 和 LOQ:13.0ng/mL ±3),以及基于 DPV 的抗生素耐药标志物β-内酰胺酶检测 (LOD:3.6ng/mL ±1.65 和 LOQ:10ng/mL ±4)。集成的 EIS 和 DPV 生物传感器用于同时检测表达 EspB 和产生β-内酰胺酶的细菌。两个通道的组合读数允许区分抗生素耐药和敏感的致病菌。该集成电化学生物传感器成功实现了同时快速检测双阳性 EspB 和β-内酰胺酶表达细菌。这种由短时间内完成的便携设备和简化的样本制备提供的区分,对于减轻抗生素耐药性的传播可能非常有价值。这种新的诊断工具为开发即时护理点设备在临床诊断中具有广阔的前景。