Wei Qinqin, He Guiling, Gan Siyu, Huang Sizhao, Chen Xihao, Fu Jia, Wang Ning
College of Science, Key Laboratory of High-Performance Scientific Computation, Xihua University, Chengdu 610039, China.
School of Science, Harbin University of Science and Technology, Harbin 150006, China.
Langmuir. 2024 May 7;40(18):9775-9784. doi: 10.1021/acs.langmuir.4c00868. Epub 2024 Apr 25.
We obtained a new material called monolayer 1T-AgS by replacing metal atoms in 1T phase transition-metal dichalcogenide sulfides (TMDs) with octahedral Ag clusters. Subsequently, the thermoelectric transport properties of monolayer 1T-AgS were systematically investigated using first-principles calculations and the generalized gradient approximation (GGA-PBE) exchange correlation functional. The findings demonstrate that monolayer 1T-AgS displays characteristics of a wide-bandgap semiconductor, with a bandgap of 2.48 eV. Notably, the incorporation of Ag clusters disrupts the structural symmetry, effectively enhancing the electronic structure and phonon properties of the material. Due to the flat valence band near the Fermi level, the extended relaxation time of the hole results in a greater effective mass compared to the electron, leading to a significant increase in the Seebeck coefficient. Under optimal doping conditions, the power factor of monolayer 1T-AgS can achieve 14.9 mW/mK at 500 K. The intricate crystal structure induces phonon path bending, reduces the overall frequency of phonon vibrations (<10 THz), and causes hybridization of low-frequency optical and acoustic branches, resulting in remarkably low lattice thermal conductivity (0.20 and 0.17 W/mK along the and axes at 500 K, respectively). The monolayer 1T-AgS demonstrates a remarkably high figure of merit of 3.14 (3.15) on the () axis at 500 K, significantly higher than those of conventional TMD materials. Such excellent thermoelectric properties suggest that monolayer 1T-AgS is a promising thermoelectric (TE) material. Our work reveals the deep mechanism of cluster substitution to optimize the thermoelectric properties of materials and provides a useful reference for subsequent research.
我们通过用八面体银簇取代1T相过渡金属二硫属化物(TMDs)中的金属原子,获得了一种名为单层1T-AgS的新材料。随后,使用第一性原理计算和广义梯度近似(GGA-PBE)交换关联泛函,系统地研究了单层1T-AgS的热电输运性质。研究结果表明,单层1T-AgS表现出宽带隙半导体的特性,带隙为2.48 eV。值得注意的是,银簇的引入破坏了结构对称性,有效地增强了材料的电子结构和声子性质。由于费米能级附近的价带平坦,空穴的扩展弛豫时间导致其有效质量比电子大,从而使塞贝克系数显著增加。在最佳掺杂条件下,单层1T-AgS在500 K时的功率因数可达到14.9 mW/mK。复杂的晶体结构导致声子路径弯曲,降低了声子振动的整体频率(<10 THz),并导致低频光学和声学分支的杂化,从而使晶格热导率显著降低(在500 K时,沿 轴和 轴分别为0.20和0.17 W/mK)。单层1T-AgS在500 K时,在 ()轴上表现出高达3.14(3.15)的优值,明显高于传统TMD材料。如此优异的热电性能表明单层1T-AgS是一种很有前途的热电(TE)材料。我们的工作揭示了簇取代优化材料热电性能的深层机制,并为后续研究提供了有用的参考。