Ding Zijin, Chen Quanlin, Jiang Yuanzhi, Yuan Mingjian
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300051, P. R. China.
JACS Au. 2024 Mar 21;4(4):1263-1277. doi: 10.1021/jacsau.3c00835. eCollection 2024 Apr 22.
Hybrid organic-inorganic perovskites with diverse lattice structures and chemical composition provide an ideal material platform for novel functionalization, including chirality transfer. Chiral perovskites combine organic and inorganic sublattices, therefore encoding the structural asymmetry into the electronic structures and giving rise to the spin-splitting effect. From a structural chemistry perspective, the magnitude of the spin-splitting effect crucially depends on the noncovalent and electrostatic interaction within the chiral perovskite, which induces the local site and long-range bulk inversion symmetry breaking. In this regard, we systematically retrospect the structure-property relationships in chiral perovskite. Insight into the rational design of chiral perovskites based on molecular configuration, dimensionality, and chemical composition along with their effects on spin-splitting manifestation is presented. Lastly, challenges in purposeful material design and further integration into chiral perovskite-based spintronic devices are outlined. With an understanding of fundamental chemistry and physics, we believe that this Perspective will propel the application of multifunctional spintronic devices.
具有多种晶格结构和化学成分的有机-无机杂化钙钛矿为包括手性转移在内的新型功能化提供了理想的材料平台。手性钙钛矿结合了有机和无机亚晶格,因此将结构不对称性编码到电子结构中,并产生自旋分裂效应。从结构化学的角度来看,自旋分裂效应的大小关键取决于手性钙钛矿内的非共价和静电相互作用,这会导致局域位点和长程体反转对称性破缺。在这方面,我们系统地回顾了手性钙钛矿中的结构-性质关系。本文深入探讨了基于分子构型、维度和化学成分的手性钙钛矿的合理设计,以及它们对自旋分裂表现的影响。最后,概述了在有目的的材料设计以及进一步集成到手性钙钛矿基自旋电子器件方面所面临的挑战。基于对基础化学和物理的理解,我们相信这一观点将推动多功能自旋电子器件的应用。