Suppr超能文献

利用多视图图像增强苹果品种分类

Enhancing Apple Cultivar Classification Using Multiview Images.

作者信息

Krug Silvia, Hutschenreuther Tino

机构信息

Department of Computer and Electrical Engineering, Mid Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden.

System Design Department, IMMS Institut für Mikroelektronik- und Mechatronik-Systeme Gemeinnützige GmbH (IMMS GmbH), Ehrenbergstraße 27, 98693 Ilmenau, Germany.

出版信息

J Imaging. 2024 Apr 17;10(4):94. doi: 10.3390/jimaging10040094.

Abstract

Apple cultivar classification is challenging due to the inter-class similarity and high intra-class variations. Human experts do not rely on single-view features but rather study each viewpoint of the apple to identify a cultivar, paying close attention to various details. Following our previous work, we try to establish a similar multiview approach for machine-learning (ML)-based apple classification in this paper. In our previous work, we studied apple classification using one single view. While these results were promising, it also became clear that one view alone might not contain enough information in the case of many classes or cultivars. Therefore, exploring multiview classification for this task is the next logical step. Multiview classification is nothing new, and we use state-of-the-art approaches as a base. Our goal is to find the best approach for the specific apple classification task and study what is achievable with the given methods towards our future goal of applying this on a mobile device without the need for internet connectivity. In this study, we compare an ensemble model with two cases where we use single networks: one without view specialization trained on all available images without view assignment and one where we combine the separate views into a single image of one specific instance. The two latter options reflect dataset organization and preprocessing to allow the use of smaller models in terms of stored weights and number of operations than an ensemble model. We compare the different approaches based on our custom apple cultivar dataset. The results show that the state-of-the-art ensemble provides the best result. However, using images with combined views shows a decrease in accuracy by 3% while requiring only 60% of the memory for weights. Thus, simpler approaches with enhanced preprocessing can open a trade-off for classification tasks on mobile devices.

摘要

由于苹果品种之间的相似性以及同一品种内部的高度变异性,苹果品种分类具有挑战性。人类专家并不依赖单一视角的特征,而是研究苹果的各个视角来识别品种,密切关注各种细节。遵循我们之前的工作,本文尝试为基于机器学习(ML)的苹果分类建立一种类似的多视角方法。在我们之前的工作中,我们使用单一视角研究苹果分类。虽然这些结果很有前景,但也很明显,在许多类别或品种的情况下,单一视角可能包含的信息不足。因此,探索该任务的多视角分类是下一步合理的举措。多视角分类并非新鲜事物,我们以最先进的方法为基础。我们的目标是找到针对特定苹果分类任务的最佳方法,并研究在给定方法下朝着我们未来在无需互联网连接的移动设备上应用这一目标能够实现什么。在本研究中,我们将一个集成模型与两种使用单个网络的情况进行比较:一种是在没有视图分配的情况下,对所有可用图像进行训练且没有视图专门化;另一种是将单独的视图组合成一个特定实例的单一图像。后两种选择反映了数据集的组织和预处理,以便在存储权重和操作数量方面使用比集成模型更小的模型。我们基于自定义的苹果品种数据集比较不同的方法。结果表明,最先进的集成模型提供了最佳结果。然而,使用组合视图的图像在准确率上下降了3%,而权重所需内存仅为60%。因此,具有增强预处理的更简单方法可以为移动设备上的分类任务带来一种权衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a153/11050762/d4fdd0754745/jimaging-10-00094-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验