Suppr超能文献

基于机器学习的心脏病分类中用于特征选择的元启发式优化算法的比较分析

A comparative analysis of meta-heuristic optimization algorithms for feature selection on ML-based classification of heart-related diseases.

作者信息

Ay Şevket, Ekinci Ekin, Garip Zeynep

机构信息

Computer Engineering Department, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, 54187 Turkey.

出版信息

J Supercomput. 2023;79(11):11797-11826. doi: 10.1007/s11227-023-05132-3. Epub 2023 Mar 3.

Abstract

This study aims to use a machine learning (ML)-based enhanced diagnosis and survival model to predict heart disease and survival in heart failure by combining the cuckoo search (CS), flower pollination algorithm (FPA), whale optimization algorithm (WOA), and Harris hawks optimization (HHO) algorithms, which are meta-heuristic feature selection algorithms. To achieve this, experiments are conducted on the Cleveland heart disease dataset and the heart failure dataset collected from the Faisalabad Institute of Cardiology published at UCI. CS, FPA, WOA, and HHO algorithms for feature selection are applied for different population sizes and are realized based on the best fitness values. For the original dataset of heart disease, the maximum prediction F-score of 88% is obtained using K-nearest neighbour (KNN) when compared to logistic regression (LR), support vector machine (SVM), Gaussian Naive Bayes (GNB), and random forest (RF). With the proposed approach, the heart disease prediction F-score of 99.72% is obtained using KNN for population sizes 60 with FPA by selecting eight features. For the original dataset of heart failure, the maximum prediction F-score of 70% is obtained using LR and RF compared to SVM, GNB, and KNN. With the proposed approach, the heart failure prediction F-score of 97.45% is obtained using KNN for population sizes 10 with HHO by selecting five features. Experimental findings show that the applied meta-heuristic algorithms with ML algorithms significantly improve prediction performances compared to performances obtained from the original datasets. The motivation of this paper is to select the most critical and informative feature subset through meta-heuristic algorithms to improve classification accuracy.

摘要

本研究旨在通过结合布谷鸟搜索(CS)、花粉传播算法(FPA)、鲸鱼优化算法(WOA)和哈里斯鹰优化(HHO)算法(这些都是元启发式特征选择算法),使用基于机器学习(ML)的增强诊断和生存模型来预测心脏病及心力衰竭患者的生存率。为此,对从UCI公布的费萨拉巴德心脏病研究所收集的克利夫兰心脏病数据集和心力衰竭数据集进行了实验。用于特征选择的CS、FPA、WOA和HHO算法针对不同的种群规模进行了应用,并基于最佳适应度值得以实现。对于心脏病原始数据集,与逻辑回归(LR)、支持向量机(SVM)、高斯朴素贝叶斯(GNB)和随机森林(RF)相比,使用K近邻(KNN)时获得的最大预测F分数为88%。采用所提出的方法,通过FPA选择八个特征,对于种群规模为60的情况,使用KNN获得的心脏病预测F分数为99.72%。对于心力衰竭原始数据集,与SVM、GNB和KNN相比,使用LR和RF时获得的最大预测F分数为70%。采用所提出的方法,通过HHO选择五个特征,对于种群规模为10的情况,使用KNN获得的心力衰竭预测F分数为97.45%。实验结果表明,与从原始数据集获得的性能相比,应用的元启发式算法与ML算法显著提高了预测性能。本文的动机是通过元启发式算法选择最关键和信息丰富的特征子集,以提高分类准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83f5/9983547/32c5aee27bc0/11227_2023_5132_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验