Division of Biology and Biological Engineering, Caltech, Pasadena, California, USA.
Division of Geological and Planetary Sciences, Caltech, Pasadena, California, USA.
Appl Environ Microbiol. 2022 Jun 14;88(11):e0043922. doi: 10.1128/aem.00439-22. Epub 2022 May 19.
Gaining insight into the behavior of bacteria at the single-cell level is important given that heterogeneous microenvironments strongly influence microbial physiology. The hybridization chain reaction (HCR) is a technique that provides molecular signal amplification, enabling simultaneous mapping of multiple target RNAs at small spatial scales. To refine this method for biofilm applications, we designed and validated new probes to visualize the expression of key catabolic genes in Pseudomonas aeruginosa aggregates. In addition to using existing probes for the dissimilatory nitrate reductase (), we developed probes for a terminal oxidase (), nitrite reductase (), nitrous oxide reductase (), and acetate kinase (). These probes can be used to determine gene expression levels across heterogeneous populations such as biofilms. Using these probes, we quantified gene expression across oxygen gradients in aggregate populations grown using the gar lock iofilm ssay (ABBA). We observed distinct patterns of catabolic gene expression, with upregulation occurring in particular ABBA regions both within individual aggregates and over the aggregate population. Aerobic respiration () showed peak expression under oxic conditions, whereas fermentation () showed peak expression in the anoxic cores of high metabolic activity aggregates near the air-agar interface. Denitrification genes and showed peak expression in hypoxic and anoxic regions, although expression remained at peak levels deeper into anoxic environments than other denitrification genes. These results reveal that the microenvironment correlates with catabolic gene expression in aggregates, and they demonstrate the utility of HCR in unveiling cellular activities at the microscale level in heterogeneous populations. To understand bacteria in diverse contexts, we must understand the variations in behaviors and metabolisms they express spatiotemporally. Populations of bacteria are known to be heterogeneous, but the ways this variation manifests can be challenging to characterize due to technical limitations. By focusing on energy conservation, we demonstrate that HCR v3.0 can visualize nuances in gene expression, allowing us to understand how metabolism in Pseudomonas aeruginosa biofilms responds to microenvironmental variation at high spatial resolution. We validated probes for four catabolic genes, including a constitutively expressed oxidase, acetate kinase, nitrite reductase, and nitrous oxide reductase. We showed that the genes for different modes of metabolism are expressed in overlapping but distinct subpopulations according to oxygen concentrations in a predictable fashion. The spatial transcriptomic technique described here has the potential to be used to map microbial activities across diverse environments.
鉴于异质微环境强烈影响微生物生理学,深入了解细菌在单细胞水平上的行为非常重要。杂交链式反应(HCR)是一种提供分子信号放大的技术,能够在小的空间尺度上同时对多个靶 RNA 进行映射。为了改进该方法在生物膜中的应用,我们设计并验证了新的探针,以可视化铜绿假单胞菌聚集体中关键分解代谢基因的表达。除了使用现有探针来检测异化硝酸盐还原酶()外,我们还为末端氧化酶()、亚硝酸盐还原酶()、一氧化二氮还原酶()和乙酰激酶()开发了探针。这些探针可用于确定生物膜等异质群体中的基因表达水平。使用这些探针,我们在使用 gar lock iofilm ssay(ABBA)生长的聚集体种群的氧梯度上定量了基因表达。我们观察到分解代谢基因表达的明显模式,在单个聚集体内和聚集体种群中,特定的 ABBA 区域发生上调。好氧呼吸()在有氧条件下表现出表达峰值,而发酵()在靠近空气-琼脂界面的高代谢活性聚集体的缺氧核心中表现出表达峰值。尽管与其他反硝化基因相比,基因的表达在缺氧环境中仍保持在峰值水平,但反硝化基因和显示出在缺氧和缺氧区域的表达峰值。这些结果表明,微环境与聚集体中的分解代谢基因表达相关,并且它们证明了 HCR 在揭示异质群体中微观水平上细胞活动的有用性。为了在不同的环境中了解细菌,我们必须了解它们在时空上表达的行为和代谢的变化。众所周知,细菌种群是异质的,但由于技术限制,很难描述这种变化的表现方式。通过关注能量守恒,我们证明 HCR v3.0 可以可视化基因表达的细微差别,使我们能够了解铜绿假单胞菌生物膜中的代谢如何对高空间分辨率的微环境变化做出反应。我们验证了四个分解代谢基因的探针,包括一种组成型表达的氧化酶、乙酰激酶、亚硝酸盐还原酶和一氧化二氮还原酶。我们表明,根据氧气浓度,不同代谢方式的基因以可预测的方式在重叠但不同的亚群中表达。这里描述的空间转录组学技术有可能用于在不同环境中绘制微生物活性。