Suppr超能文献

基于深度学习的胃镜检查解剖位识别。

Deep learning-based anatomical position recognition for gastroscopic examination.

机构信息

Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China.

School of Information Science and Engineering, Harbin Institute of Technology, Weihai, Shandong, China.

出版信息

Technol Health Care. 2024;32(S1):39-48. doi: 10.3233/THC-248004.

Abstract

BACKGROUND

The gastroscopic examination is a preferred method for the detection of upper gastrointestinal lesions. However, gastroscopic examination has high requirements for doctors, especially for the strict position and quantity of the archived images. These requirements are challenging for the education and training of junior doctors.

OBJECTIVE

The purpose of this study is to use deep learning to develop automatic position recognition technology for gastroscopic examination.

METHODS

A total of 17182 gastroscopic images in eight anatomical position categories are collected. Convolutional neural network model MogaNet is used to identify all the anatomical positions of the stomach for gastroscopic examination The performance of four models is evaluated by sensitivity, precision, and F1 score.

RESULTS

The average sensitivity of the method proposed is 0.963, which is 0.074, 0.066 and 0.065 higher than ResNet, GoogleNet and SqueezeNet, respectively. The average precision of the method proposed is 0.964, which is 0.072, 0.067 and 0.068 higher than ResNet, GoogleNet, and SqueezeNet, respectively. And the average F1-Score of the method proposed is 0.964, which is 0.074, 0.067 and 0.067 higher than ResNet, GoogleNet, and SqueezeNet, respectively. The results of the t-test show that the method proposed is significantly different from other methods (p< 0.05).

CONCLUSION

The method proposed exhibits the best performance for anatomical positions recognition. And the method proposed can help junior doctors meet the requirements of completeness of gastroscopic examination and the number and position of archived images quickly.

摘要

背景

胃镜检查是发现上消化道病变的首选方法。然而,胃镜检查对医生的要求较高,尤其是对存档图像的严格位置和数量要求,这对于青年医生的教育和培训提出了挑战。

目的

本研究旨在利用深度学习开发胃镜检查自动定位识别技术。

方法

共采集了 8 个解剖位置类别的 17182 张胃镜图像。使用卷积神经网络模型 MogaNet 对胃镜检查的所有胃解剖位置进行识别。通过灵敏度、精度和 F1 评分来评估四个模型的性能。

结果

所提出方法的平均灵敏度为 0.963,分别比 ResNet、GoogleNet 和 SqueezeNet 高 0.074、0.066 和 0.065。所提出方法的平均精度为 0.964,分别比 ResNet、GoogleNet 和 SqueezeNet 高 0.072、0.067 和 0.068。所提出方法的平均 F1-Score 为 0.964,分别比 ResNet、GoogleNet 和 SqueezeNet 高 0.074、0.067 和 0.067。t 检验结果表明,所提出的方法与其他方法有显著差异(p<0.05)。

结论

所提出的方法在解剖位置识别方面表现出最佳性能。所提出的方法可以帮助青年医生快速满足胃镜检查的完整性要求以及存档图像的数量和位置要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9681/11191429/a907197b893d/thc-32-thc248004-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验