Suppr超能文献

基于深度学习和胃镜图像的早期胃癌检测和病变分割。

Early gastric cancer detection and lesion segmentation based on deep learning and gastroscopic images.

机构信息

Guangxi Key Laboratory of Information Functional Materials and Intelligent Information Processing, School of Physics and Electronics, Nanning Normal University, 175 Mingxiu East Road, Nanning, 530001, Guangxi, China.

Department of Gastroenterology, Shandong Second Provincial General Hospital, 4 Duan Xing West Road, Jinan, 250022, Shandong, China.

出版信息

Sci Rep. 2024 Apr 3;14(1):7847. doi: 10.1038/s41598-024-58361-8.

Abstract

Gastric cancer is a highly prevalent disease that poses a serious threat to public health. In clinical practice, gastroscopy is frequently used by medical practitioners to screen for gastric cancer. However, the symptoms of gastric cancer at different stages of advancement vary significantly, particularly in the case of early gastric cancer (EGC). The manifestations of EGC are often indistinct, leading to a detection rate of less than 10%. In recent years, researchers have focused on leveraging deep learning algorithms to assist medical professionals in detecting EGC and thereby improve detection rates. To enhance the ability of deep learning to detect EGC and segment lesions in gastroscopic images, an Improved Mask R-CNN (IMR-CNN) model was proposed. This model incorporates a "Bi-directional feature extraction and fusion module" and a "Purification module for feature channel and space" based on the Mask R-CNN (MR-CNN). Our study includes a dataset of 1120 images of EGC for training and validation of the models. The experimental results indicate that the IMR-CNN model outperforms the original MR-CNN model, with Precision, Recall, Accuracy, Specificity and F1-Score values of 92.9%, 95.3%, 93.9%, 92.5% and 94.1%, respectively. Therefore, our proposed IMR-CNN model has superior detection and lesion segmentation capabilities and can effectively aid doctors in diagnosing EGC from gastroscopic images.

摘要

胃癌是一种高发疾病,严重威胁着公众健康。在临床实践中,医生常通过胃镜检查来筛查胃癌。然而,不同进展阶段的胃癌症状差异很大,尤其是早期胃癌(EGC)。EGC 的表现往往不明显,导致检出率低于 10%。近年来,研究人员专注于利用深度学习算法来帮助医生检测 EGC,从而提高检出率。为了提高深度学习检测 EGC 和分割胃镜图像中病变的能力,提出了一种改进的 Mask R-CNN(IMR-CNN)模型。该模型基于 Mask R-CNN(MR-CNN),采用了“双向特征提取和融合模块”和“特征通道和空间净化模块”。我们的研究包括一个 EGC 的 1120 张图像数据集,用于训练和验证模型。实验结果表明,IMR-CNN 模型优于原始的 MR-CNN 模型,其精度、召回率、准确率、特异性和 F1 得分分别为 92.9%、95.3%、93.9%、92.5%和 94.1%。因此,我们提出的 IMR-CNN 模型具有优越的检测和病变分割能力,可以有效帮助医生从胃镜图像中诊断 EGC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4305/10991264/66d5a0ce165a/41598_2024_58361_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验