Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China.
School of Information Science and Engineering, Harbin Institute of Technology, Weihai, Shandong, China.
Technol Health Care. 2023;31(S1):313-322. doi: 10.3233/THC-236027.
A timely diagnosis of early gastric cancer (EGC) can greatly reduce the death rate of patients. However, the manual detection of EGC is a costly and low-accuracy task. The artificial intelligence (AI) method based on deep learning is considered as a potential method to detect EGC. AI methods have outperformed endoscopists in EGC detection, especially with the use of the different region convolutional neural network (RCNN) models recently reported. However, no studies compared the performances of different RCNN series models.
This study aimed to compare the performances of different RCNN series models for EGC.
Three typical RCNN models were used to detect gastric cancer using 3659 gastroscopic images, including 1434 images of EGC: Faster RCNN, Cascade RCNN, and Mask RCNN.
The models were evaluated in terms of specificity, accuracy, precision, recall, and AP. Fast RCNN, Cascade RCNN, and Mask RCNN had similar accuracy (0.935, 0.938, and 0.935). The specificity of Cascade RCNN was 0.946, which was slightly higher than 0.908 for Faster RCNN and 0.908 for Mask RCNN.
Faster RCNN and Mask RCNN place more emphasis on positive detection, and Cascade RCNN places more emphasis on negative detection. These methods based on deep learning were conducive to helping in early cancer diagnosis using endoscopic images.
及时诊断早期胃癌(EGC)可以大大降低患者的死亡率。然而,手动检测 EGC 是一项成本高、准确率低的任务。基于深度学习的人工智能(AI)方法被认为是检测 EGC 的一种潜在方法。AI 方法在 EGC 检测方面已经超过了内窥镜医生,尤其是最近报道的使用不同区域卷积神经网络(RCNN)模型的方法。然而,尚无研究比较不同 RCNN 系列模型的性能。
本研究旨在比较不同 RCNN 系列模型在 EGC 检测中的性能。
使用 3659 张胃镜图像,包括 1434 张 EGC 图像,使用三种典型的 RCNN 模型来检测胃癌:Faster RCNN、Cascade RCNN 和 Mask RCNN。
从特异性、准确性、精确性、召回率和 AP 等方面对模型进行了评估。Fast RCNN、Cascade RCNN 和 Mask RCNN 的准确性相似(0.935、0.938 和 0.935)。Cascade RCNN 的特异性为 0.946,略高于 Faster RCNN 的 0.908 和 Mask RCNN 的 0.908。
Faster RCNN 和 Mask RCNN 更注重阳性检测,而 Cascade RCNN 更注重阴性检测。这些基于深度学习的方法有助于利用内镜图像进行早期癌症诊断。