文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用机器学习进行下颌骨和牙齿测量的性别判定。

Mandibular and dental measurements for sex determination using machine learning.

机构信息

Department of Orthodontics, Medical Faculty, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.

Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, São Paulo, 14040-904, Brazil.

出版信息

Sci Rep. 2024 Apr 26;14(1):9587. doi: 10.1038/s41598-024-59556-9.


DOI:10.1038/s41598-024-59556-9
PMID:38671054
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11053013/
Abstract

The present study tested the combination of mandibular and dental dimensions for sex determination using machine learning. Lateral cephalograms and dental casts were used to obtain mandibular and mesio-distal permanent teeth dimensions, respectively. Univariate statistics was used for variables selection for the supervised machine learning model (alpha = 0.05). The following algorithms were trained: logistic regression, gradient boosting classifier, k-nearest neighbors, support vector machine, multilayer perceptron classifier, decision tree, and random forest classifier. A threefold cross-validation approach was adopted to validate each model. The areas under the curve (AUC) were computed, and ROC curves were constructed. Three mandibular-related measurements and eight dental size-related dimensions were used to train the machine learning models using data from 108 individuals. The mandibular ramus height and the lower first molar mesio-distal size exhibited the greatest predictive capability in most of the evaluated models. The accuracy of the models varied from 0.64 to 0.74 in the cross-validation stage, and from 0.58 to 0.79 when testing the data. The logistic regression model exhibited the highest performance (AUC = 0.84). Despite the limitations of this study, the results seem to show that the integration of mandibular and dental dimensions for sex prediction would be a promising approach, emphasizing the potential of machine learning techniques as valuable tools for this purpose.

摘要

本研究采用机器学习方法检验下颌和牙齿尺寸的组合在性别判定中的应用。侧位头颅片和牙模分别用于获取下颌和近远中永久牙齿的尺寸。采用单变量统计对监督机器学习模型的变量进行选择(alpha=0.05)。训练了以下算法:逻辑回归、梯度提升分类器、k-最近邻、支持向量机、多层感知机分类器、决策树和随机森林分类器。采用三折交叉验证方法对每个模型进行验证。计算曲线下面积(AUC),并构建 ROC 曲线。使用来自 108 个人的数据,使用三个下颌相关测量值和八个牙齿尺寸相关维度来训练机器学习模型。在下颌升支高度和下颌第一磨牙近远中尺寸方面,大多数评估模型都表现出了最大的预测能力。在交叉验证阶段,模型的准确性从 0.64 到 0.74 不等,在测试数据时,准确性从 0.58 到 0.79 不等。逻辑回归模型表现出最高的性能(AUC=0.84)。尽管本研究存在局限性,但结果似乎表明,整合下颌和牙齿尺寸进行性别预测可能是一种很有前途的方法,强调了机器学习技术作为这一目的有价值工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d258/11053013/a36c89dc282a/41598_2024_59556_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d258/11053013/7f78a90f5f9f/41598_2024_59556_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d258/11053013/cca200c917e4/41598_2024_59556_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d258/11053013/a36c89dc282a/41598_2024_59556_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d258/11053013/7f78a90f5f9f/41598_2024_59556_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d258/11053013/cca200c917e4/41598_2024_59556_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d258/11053013/a36c89dc282a/41598_2024_59556_Fig3_HTML.jpg

相似文献

[1]
Mandibular and dental measurements for sex determination using machine learning.

Sci Rep. 2024-4-26

[2]
Sex determination through maxillary dental arch and skeletal base measurements using machine learning.

Head Face Med. 2024-8-30

[3]
Predicting the Risk of Maxillary Canine Impaction Based on Maxillary Measurements Using Supervised Machine Learning.

Orthod Craniofac Res. 2025-2

[4]
Predicting hospitalization following psychiatric crisis care using machine learning.

BMC Med Inform Decis Mak. 2020-12-10

[5]
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?

Clin Orthop Relat Res. 2020-7

[6]
A systematic comparison of machine learning algorithms to develop and validate prediction model to predict heart failure risk in middle-aged and elderly patients with periodontitis (NHANES 2009 to 2014).

Medicine (Baltimore). 2023-8-25

[7]
Machine learning to predict distal caries in mandibular second molars associated with impacted third molars.

Sci Rep. 2021-7-29

[8]
Chronic stress in practice assistants: An analytic approach comparing four machine learning classifiers with a standard logistic regression model.

PLoS One. 2021

[9]
Comparison of mandibular morphometric parameters in digital panoramic radiography in gender determination using machine learning.

Oral Radiol. 2024-7

[10]
Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.

Med Phys. 2018-6-13

引用本文的文献

[1]
Development and evaluation of a convolutional neural network model for sex prediction using cephalometric radiographs and cranial photographs.

BMC Med Imaging. 2025-8-25

[2]
Dental age estimation by comparing Demirjian's method and machine learning in Southeast Brazilian youth.

Forensic Sci Med Pathol. 2025-7-11

[3]
Sex estimation accuracy through metric evaluation of dental root: a cone-beam computed tomography-based study.

Braz Dent J. 2025-4-7

[4]
PITX2 expression and Neanderthal introgression in HS3ST3A1 contribute to variation in tooth dimensions in modern humans.

Curr Biol. 2025-1-6

[5]
Artificial intelligence model for predicting sexual dimorphism through the hyoid bone in adult patients.

PLoS One. 2024

[6]
Sex prediction through machine learning utilizing mandibular condyles, coronoid processes, and sigmoid notches features.

PLoS One. 2024

[7]
A new approach for sex prediction by evaluating mandibular arch and canine dimensions with machine-learning classifiers and intraoral scanners (a retrospective study).

Sci Rep. 2024-11-14

[8]
Sex determination through maxillary dental arch and skeletal base measurements using machine learning.

Head Face Med. 2024-8-30

本文引用的文献

[1]
Radiographic morphology of canines tested for sexual dimorphism via convolutional-neural-network-based artificial intelligence.

Morphologie. 2024-9

[2]
The Accuracy of Sex Identification Using CBCT Morphometric Measurements of the Mandible, with Different Machine-Learning Algorithms-A Retrospective Study.

Diagnostics (Basel). 2023-7-11

[3]
Evaluation of sex dimorphism of the mandible with geometric morphometric analysis: conventional and reconstructed panoramic radiography study.

Surg Radiol Anat. 2023-11

[4]
A systematic review of photogrammetry as a reliable methodology in gender identification of human skull.

J Forensic Leg Med. 2023-7

[5]
Artificial neural network model for predicting sex using dental and orthodontic measurements.

Korean J Orthod. 2023-5-25

[6]
Sexual dimorphism in odontometric parameters using cone beam CT: a systematic review.

Head Face Med. 2023-3-7

[7]
Polymorphisms in hormonal-related genes might be associated with variations in permanent tooth crown size.

Orthod Craniofac Res. 2023-11

[8]
A study on sex estimation by using machine learning algorithms with parameters obtained from computerized tomography images of the cranium.

Sci Rep. 2022-3-11

[9]
Prognosis of sexual dimorphism with unfused hyoid bone: Artificial intelligence informed decision making with discriminant analysis.

Sci Justice. 2021-11

[10]
How and why patterns of sexual dimorphism in human faces vary across the world.

Sci Rep. 2021-3-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索