Suppr超能文献

一种通过使用机器学习分类器和口内扫描仪评估下颌弓和尖牙尺寸来进行性别预测的新方法(回顾性研究)。

A new approach for sex prediction by evaluating mandibular arch and canine dimensions with machine-learning classifiers and intraoral scanners (a retrospective study).

机构信息

Department of Dental Nursing, Sulaimani Technical Institute, Sulaimani Polytechnic University, Sulaimani, 46001, Iraq.

Department of Oral Diagnosis, College of Dentistry, University of Sulaimani, Sulaimani, 46001, Iraq.

出版信息

Sci Rep. 2024 Nov 14;14(1):27974. doi: 10.1038/s41598-024-79738-9.

Abstract

In circumstances where antemortem information concerning the deceased individual is unavailable, forensic experts prepare biological profiling for unidentified human remains that aids in narrowing the search for identity. Biological profiling includes basic demographic information such as sex, age, stature, and ethnicity. Sex identification is the first and key step in the biological profiling of unidentified human remains, as it effectively reduces potential matches by excluding nearly one-half of the suspected cases and facilitates the subsequent stages. This study was conducted to assess the accuracy of artificial intelligence (AI) in predicting sex by analysing mandibular canine dimensions, mandibular intercanine distance (MICD), and mandibular canine index (MCI) obtained from three-dimensional (3D) digital impressions captured by using an intraoral scanner (IOS). The results of the receiver operating characteristic (ROC) test indicated that mean mandibular canine width (MeanMCW) had the highest sexual dimorphism with the area under the curve (AUC) of 0.912, and the Gaussian Naive Bayes (GNB) classifier demonstrated the highest testing accuracy among all machine learning (ML) models, achieving an accuracy of 92.5%. While the outcomes of this study are promising, further studies are imperative to validate these findings with larger sample sizes in different ethnic populations.

摘要

在无法获得死者生前信息的情况下,法医专家会为身份不明的人类遗骸准备生物特征分析,以帮助缩小寻找身份的范围。生物特征分析包括基本的人口统计学信息,如性别、年龄、身高和种族。性别鉴定是身份不明的人类遗骸生物特征分析的第一步和关键步骤,因为它可以通过排除近一半的疑似病例,有效地缩小潜在的匹配范围,并为后续阶段提供便利。本研究旨在通过分析从口腔内扫描仪(IOS)获取的三维(3D)数字印模中获得的下颌犬齿尺寸、下颌犬齿间距离(MICD)和下颌犬齿指数(MCI),评估人工智能(AI)在预测性别方面的准确性。受试者工作特征(ROC)测试的结果表明,平均下颌犬齿宽度(MeanMCW)具有最高的性别二态性,曲线下面积(AUC)为 0.912,而高斯朴素贝叶斯(GNB)分类器在所有机器学习(ML)模型中表现出最高的测试准确性,准确率达到 92.5%。虽然这项研究的结果很有前景,但需要进一步的研究,以在不同种族人群中用更大的样本量来验证这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75b9/11564754/d2b23627b9c2/41598_2024_79738_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验